期刊文献+
共找到656篇文章
< 1 2 33 >
每页显示 20 50 100
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
1
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
A Survey of Cooperative Multi-agent Reinforcement Learning for Multi-task Scenarios 被引量:1
2
作者 Jiajun CHAI Zijie ZHAO +1 位作者 Yuanheng ZHU Dongbin ZHAO 《Artificial Intelligence Science and Engineering》 2025年第2期98-121,共24页
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-... Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world. 展开更多
关键词 multi-task multi-agent reinforcement learning large language models
在线阅读 下载PDF
Short-Term Rolling Prediction of Tropical Cyclone Intensity Based on Multi-Task Learning with Fusion of Deviation-Angle Variance and Satellite Imagery
3
作者 Wei TIAN Ping SONG +5 位作者 Yuanyuan CHEN Yonghong ZHANG Liguang WU Haikun ZHAO Kenny Thiam Choy LIM KAM SIAN Chunyi XIANG 《Advances in Atmospheric Sciences》 2025年第1期111-128,共18页
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr... Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling. 展开更多
关键词 tropical cyclone INTENSITY structure rolling prediction multi-task
在线阅读 下载PDF
Explainable AI Based Multi-Task Learning Method for Stroke Prognosis
4
作者 Nan Ding Xingyu Zeng +1 位作者 Jianping Wu Liutao Zhao 《Computers, Materials & Continua》 2025年第9期5299-5315,共17页
Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predispositio... Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency. 展开更多
关键词 Explainable AI stroke prognosis multi-task learning AUC optimization
在线阅读 下载PDF
Joint Retrieval of PM_(2.5) Concentration and Aerosol Optical Depth over China Using Multi-Task Learning on FY-4A AGRI
5
作者 Bo LI Disong FU +4 位作者 Ling YANG Xuehua FAN Dazhi YANG Hongrong SHI Xiang’ao XIA 《Advances in Atmospheric Sciences》 2025年第1期94-110,共17页
Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–... Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD. 展开更多
关键词 AOD PM_(2.5) FY-4A multi-task learning joint retrieval
在线阅读 下载PDF
Skillful bias correction of offshore near-surface wind field forecasting based on a multi-task machine learning model
6
作者 Qiyang Liu Anboyu Guo +5 位作者 Fengxue Qiao Xinjian Ma Yan-An Liu Yong Huang Rui Wang Chunyan Sheng 《Atmospheric and Oceanic Science Letters》 2025年第5期28-35,共8页
Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecas... Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering. 展开更多
关键词 Forecast bias correction Wind field multi-task learning Feature engineering Explainable AI
在线阅读 下载PDF
MolP-PC:a multi-view fusion and multi-task learning framework for drug ADMET property prediction
7
作者 Sishu Li Jing Fan +2 位作者 Haiyang He Ruifeng Zhou Jun Liao 《Chinese Journal of Natural Medicines》 2025年第11期1293-1300,共8页
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches... The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development. 展开更多
关键词 Molecular ADMET prediction Multi-view fusion Attention mechanism multi-task deep learning
原文传递
A multi-task learning method for blast furnace gas forecasting based on coupling correlation analysis and inverted transformer
8
作者 Sheng Xie Jing-shu Zhang +2 位作者 Da-tao Shi Yang Guo Qi Zhang 《Journal of Iron and Steel Research International》 2025年第10期3280-3297,共18页
Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumpt... Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning. 展开更多
关键词 Byproduct gases forecasting Coupling correlation coefficient multi-task learning Inverted transformer Bi-directional long short-term memory Blast furnace gas
原文传递
MAMGBR: Group-Buying Recommendation Model Based on Multi-Head Attention Mechanism and Multi-Task Learning
9
作者 Zongzhe Xu Ming Yu 《Computers, Materials & Continua》 2025年第8期2805-2826,共22页
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as... As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates. 展开更多
关键词 Group-buying recommendation multi-head attention mechanism multi-task learning
在线阅读 下载PDF
MDTCNet:Multi-Task Classifications Network and TCNN for Direction of Arrival Estimation
10
作者 Yu Jiarun Wang Yafeng 《China Communications》 SCIE CSCD 2024年第10期148-166,共19页
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i... The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods. 展开更多
关键词 DoA estimation MDTCNet millimeter wave system multi-task classifications model regression model
在线阅读 下载PDF
Fu-Rec:Multi-Task Learning Recommendation Model Fusing Neighbor-Discrimination and Self-Discrimination
11
作者 ZHENG Sirui HUANG Bo +4 位作者 LIU Jin ZENG Guohui YIN Ling LI Zhi SUN Tie 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第2期134-144,共11页
In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance o... In recent years,self-supervised learning has achieved great success in areas such as computer vision and natural language processing because it can mine supervised signals from unlabeled data and reduce the reliance on manual labels.However,the currently generated self-supervised signals are either neighbor discrimination or self-discrimination,and there is no model to integrate neighbor discrimination and self-discrimination.Based on this,this paper proposes Fu-Rec that integrates neighbor-discrimination contrastive learning and self-discrimination contrastive learning,which consists of three modules:(1)neighbor-discrimination contrastive learning,(2)selfdiscrimination contrastive learning,and(3)recommendation module.The neighbor-discrimination contrastive learning and selfdiscrimination contrastive learning tasks are used as auxiliary tasks to assist the recommendation task.The Fu-Rec model effectively utilizes the respective advantages of neighbor-discrimination and self-discrimination to consider the information of the user’s neighbors as well as the user and the item itself for the recommendation,which results in better performance of the recommendation module.Experimental results on several public datasets demonstrate the effectiveness of the Fu-Rec proposed in this paper. 展开更多
关键词 self-supervised learning recommendation system contrastive learning multi-task learning
原文传递
Multi-task learning for seismic elastic parameter inversion with the lateral constraint of angle-gather difference
12
作者 Pu Wang Yi-An Cui +4 位作者 Lin Zhou Jing-Ye Li Xin-Peng Pan Ya Sun Jian-Xin Liu 《Petroleum Science》 CSCD 2024年第6期4001-4009,共9页
Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inv... Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inversion.However,multi-parameter inversion may bring coupling effects on the parameters and destabilize the inversion.In addition,the lateral recognition accuracy of geological structures receives great attention.To address these challenges,a multi-task learning network considering the angle-gather difference is proposed in this work.The deep learning network is usually assumed as a black box and it is unclear what it can learn.However,the introduction of angle-gather difference can force the deep learning network to focus on the lateral differences,thus improving the lateral accuracy of the prediction profile.The proposed deep learning network includes input and output blocks.First,angle gathers and the angle-gather difference are fed into two separate input blocks with Res Net architecture and Unet architecture,respectively.Then,three elastic parameters,including P-and S-wave velocities and density,are simultaneously predicted based on the idea of multi-task learning by using three separate output blocks with the same convolutional network layers.Experimental and field data tests demonstrate the effectiveness of the proposed method in improving the prediction accuracy of seismic elastic parameters. 展开更多
关键词 Seismic inversion multi-task learning network Angle gathers Lateral accuracy Elastic parameter
原文传递
A Multi-Task Deep Learning Framework for Simultaneous Detection of Thoracic Pathology through Image Classification
13
作者 Nada Al Zahrani Ramdane Hedjar +4 位作者 Mohamed Mekhtiche Mohamed Bencherif Taha Al Fakih Fattoh Al-Qershi Muna Alrazghan 《Journal of Computer and Communications》 2024年第4期153-170,共18页
Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’... Thoracic diseases pose significant risks to an individual's chest health and are among the most perilous medical diseases. They can impact either one or both lungs, which leads to a severe impairment of a person’s ability to breathe normally. Some notable examples of such diseases encompass pneumonia, lung cancer, coronavirus disease 2019 (COVID-19), tuberculosis, and chronic obstructive pulmonary disease (COPD). Consequently, early and precise detection of these diseases is paramount during the diagnostic process. Traditionally, the primary methods employed for the detection involve the use of X-ray imaging or computed tomography (CT) scans. Nevertheless, due to the scarcity of proficient radiologists and the inherent similarities between these diseases, the accuracy of detection can be compromised, leading to imprecise or erroneous results. To address this challenge, scientists have turned to computer-based solutions, aiming for swift and accurate diagnoses. The primary objective of this study is to develop two machine learning models, utilizing single-task and multi-task learning frameworks, to enhance classification accuracy. Within the multi-task learning architecture, two principal approaches exist soft parameter sharing and hard parameter sharing. Consequently, this research adopts a multi-task deep learning approach that leverages CNNs to achieve improved classification performance for the specified tasks. These tasks, focusing on pneumonia and COVID-19, are processed and learned simultaneously within a multi-task model. To assess the effectiveness of the trained model, it is rigorously validated using three different real-world datasets for training and testing. 展开更多
关键词 PNEUMONIA Thoracic Pathology COVID-19 Deep Learning multi-task Learning
暂未订购
基于改进快速搜索树和合同网的多智能体目标分配算法
14
作者 王义涛 王俊森 +2 位作者 石章松 徐慧慧 朱伟明 《兵工学报》 北大核心 2025年第5期23-34,共12页
针对多智能体任务目标分配中航迹代价估算不准确的问题,提出一种基于改进快速搜索树算法的航迹代价计算方法,在合理地规划智能体运动轨迹的同时提高智能体航迹代价估算的准确性;针对改进合同网算法投标过程中优势智能体过早签约的问题,... 针对多智能体任务目标分配中航迹代价估算不准确的问题,提出一种基于改进快速搜索树算法的航迹代价计算方法,在合理地规划智能体运动轨迹的同时提高智能体航迹代价估算的准确性;针对改进合同网算法投标过程中优势智能体过早签约的问题,提出一种智能体投标状态转化机制,使得优势智能体可以多次参与任务竞标,实现智能体系统任务负载的均衡。仿真结果表明,新提出的航迹代价计算方法能够较好地计算智能体与目标、目标与目标之间的航迹;智能体投标转化机制解决了优势智能体过早签约导致的资源浪费,智能体系统完成任务的执行时间较之前降低6.54%,但处理优势智能体问题时新的机制会增加整个任务分配的投标轮次。 展开更多
关键词 多智能体系统 目标分配 航路规划 改进合同网算法
在线阅读 下载PDF
多目标多智能体路径规划方法
15
作者 张静 王祎 +1 位作者 陈子龙 李云松 《浙江大学学报(工学版)》 北大核心 2025年第8期1689-1697,共9页
为了实现高效地将任务分配给每个智能体,为智能体规划出尽可能短且不与其他智能体发生碰撞的路径,提出多目标多智能体路径规划方法.针对传统路径规划算法使用离散时间导致成功率低的问题,该算法定义连续时间下智能体间的冲突定义与解冲... 为了实现高效地将任务分配给每个智能体,为智能体规划出尽可能短且不与其他智能体发生碰撞的路径,提出多目标多智能体路径规划方法.针对传统路径规划算法使用离散时间导致成功率低的问题,该算法定义连续时间下智能体间的冲突定义与解冲突方式,在A^(*)算法的基础上引入安全间隔与标签的概念,使得A^(*)算法可以规划出满足连续时间约束的最优路径.针对多智能体路径规划问题中因碰撞检测、冲突避免造成的较大计算量,提出冲突分级策略,减少了算法求解过程中扩展的节点数量.实验结果表明,利用所提出的算法能够求解得到更优的解决方案,且该算法具有更好的适用性;在智能体分布密集的场景下,该算法表现出更低的路径总成本和更高的求解成功率. 展开更多
关键词 多智能体系统 路径规划 任务分配 改进A^(*)算法 冲突搜索
在线阅读 下载PDF
融合层注意力机制的多视角图对比学习推荐方法
16
作者 钱忠胜 黄恒 +1 位作者 朱辉 刘金平 《计算机研究与发展》 北大核心 2025年第1期160-178,共19页
图对比学习因其可有效缓解数据稀疏问题被广泛应用在推荐系统中.然而,目前大多数基于图对比学习的推荐算法均采用单一视角进行学习,这极大地限制了模型的泛化能力,且图卷积网络本身存在的过度平滑问题也影响着模型的稳定性.基于此,提出... 图对比学习因其可有效缓解数据稀疏问题被广泛应用在推荐系统中.然而,目前大多数基于图对比学习的推荐算法均采用单一视角进行学习,这极大地限制了模型的泛化能力,且图卷积网络本身存在的过度平滑问题也影响着模型的稳定性.基于此,提出一种融合层注意力机制的多视角图对比学习推荐方法.一方面,该方法提出2种不同视角下的3种对比学习,在视图级视角下,通过对原始图添加随机噪声构建扰动增强视图,利用奇异值分解(singular value decomposition)重组构建SVD增强视图,对这2个增强视图进行视图级对比学习;在节点视角下,利用节点间的语义信息分别进行候选节点和候选结构邻居对比学习,并将3种对比学习辅助任务和推荐任务进行多任务学习优化,以提高节点嵌入的质量,从而提升模型的泛化能力.另一方面,在图卷积网络学习用户和项目的节点嵌入时,采用层注意力机制的方式聚合最终的节点嵌入,提高模型的高阶连通性,以缓解过度平滑问题.在4个公开数据集LastFM,Gowalla,Ifashion,Yelp上与10个经典模型进行对比,结果表明该方法在Recall,Precision,NDCG这3个指标上分别平均提升3.12%,3.22%,4.06%,这说明所提方法是有效的. 展开更多
关键词 层注意力机制 对比学习 图卷积网络 多任务学习 推荐系统
在线阅读 下载PDF
边缘计算环境下基于相关性的任务分区实时低功耗调度算法
17
作者 刘芳 陈子煜 +3 位作者 马昆 彭敏 何炎祥 胡威 《小型微型计算机系统》 北大核心 2025年第2期289-296,共8页
在嵌入式实时系统中,边缘智能技术显著提升了计算性能.然而,确保任务时效性、提高效率、降低能耗和系统阻塞仍然是关键研究领域.本研究专注于同质多核系统的任务调度问题,提出了一种名为“基于相关性的任务分区节能调度策略”(CBTP)的... 在嵌入式实时系统中,边缘智能技术显著提升了计算性能.然而,确保任务时效性、提高效率、降低能耗和系统阻塞仍然是关键研究领域.本研究专注于同质多核系统的任务调度问题,提出了一种名为“基于相关性的任务分区节能调度策略”(CBTP)的节能调度策略.CBTP通过深度分析任务之间的依赖关系,为它们分配最优处理器,减少资源争用和阻塞.为了实现高效的并发访问,采用了多处理器堆栈资源协议(MSRP)和高性能的分区最早截止优先调度算法(P-EDF).同时,CBTP引入了双速节能机制,结合动态电压和频率调整(DVFS)来灵活调整任务的执行速度.实验结果表明,CBTP策略明显优于传统方法,显著降低了系统阻塞和能耗,验证了其在同质多核系统中的卓越性和有效性.这项研究提供了一种新的视角,旨在边缘计算环境下来提升实时系统的调度性能,同时提高调度的能源效率. 展开更多
关键词 边缘智能 任务时效性 任务调度 能耗 多核系统 CBTP策略
在线阅读 下载PDF
论“掘进就是掘模型”的学术思想
18
作者 马宏伟 孙思雅 +16 位作者 王川伟 毛清华 薛旭升 刘鹏 田海波 王鹏 张烨 聂珍 马柯翔 郭逸风 张恒 王赛赛 李烺 苏浩 崔闻达 成佳帅 喻祖坤 《煤炭学报》 北大核心 2025年第1期661-675,共15页
为了实现煤矿巷道安全、高效、智能掘进,提出了“掘进就是掘模型”的学术思想,给出了“掘进就是掘模型”学术思想的内涵和体系架构,凝练了“掘进就是掘模型”的关键技术问题,即融合多源信息的多元巷道模型构建技术、基于巷道模型的智能... 为了实现煤矿巷道安全、高效、智能掘进,提出了“掘进就是掘模型”的学术思想,给出了“掘进就是掘模型”学术思想的内涵和体系架构,凝练了“掘进就是掘模型”的关键技术问题,即融合多源信息的多元巷道模型构建技术、基于巷道模型的智能截割技术、基于巷道模型的智能临时支护技术、基于巷道模型的智能永久支护技术、基于巷道模型的智能导航技术和基于巷道模型的机群智能并行协同控制技术。针对巷道模型构建问题,提出融合地质勘探、巷道设计、超前探测等多源数据的巷道模型构建方法,为掘进系统各子系统模型构建提供统一基准;针对基于巷道模型的智能截割问题,建立了待掘巷道模型与截割子系统模型的耦合子模型,提出了智能截割轨迹规划以及截割参数优化方法,制定了巷道智能截割策略,实现了截割子系统自适应规划截割;针对基于巷道模型的智能临时支护问题,建立了截割巷道模型与临时支护子系统耦合的临时支护子模型,提出了临时支护位姿与支护力自适应调整方法,实现了临时支护子系统安全可靠作业,提高了围岩的稳定性,为掘锚并行协同作业奠定了时空基础;针对基于巷道模型的永久支护问题,建立了临时支护巷道模型与永久支护子系统耦合的永久支护子模型,提出了受限时空下永久支护子系统内部各钻锚设备的协同控制方法,实现了永久支护子系统的高效协同控制;针对基于巷道模型的智能导航问题,建立了巷道模型与导航子系统耦合的导航子模型,提出了“惯导+全站仪”的智能掘进系统精确导航方法,提高了巷道掘进精度和成型质量;针对基于巷道模型的机群智能并行协同控制问题,建立了巷道模型与机群协同控制子系统耦合的并行协同控制子模型,制定了多机并行协同控制策略,提出了多任务多系统智能掘进系统协同控制方法,实现了智能掘进系统安全高效掘进。基于“掘进就是掘模型”的学术思想,研发了护盾式煤矿巷道掘进机器人系统,成功应用于陕煤化集团陕西小保当矿业有限公司,破解了夹矸厚、硬度大、片帮严重等复杂地质条件煤矿巷道掘进难题,有效提高了巷道掘进的安全性、高效性和智能化水平。 展开更多
关键词 煤矿智能掘进 掘进就是掘模型 智能掘进机器人 智能导航 智能支护 多任务协同控制
在线阅读 下载PDF
基于不确定场景的多决策风格智能任务分配方法 被引量:1
19
作者 刘家义 王刚 +2 位作者 贾晨星 付强 明月伟 《空军工程大学学报》 北大核心 2025年第1期104-110,共7页
现代信息化战争中,战场环境复杂多变,具有高动态、不完全信息和不确定性等特点,深度强化学习为其中的任务分配问题提供了新思路。针对智能体在不确定场景中泛化能力不足的问题,提出了面向不确定场景的多决策风格智能体架构,增强了智能... 现代信息化战争中,战场环境复杂多变,具有高动态、不完全信息和不确定性等特点,深度强化学习为其中的任务分配问题提供了新思路。针对智能体在不确定场景中泛化能力不足的问题,提出了面向不确定场景的多决策风格智能体架构,增强了智能体面对不确定复杂环境的适应能力;针对深度强化学习方法中单一奖励函数很难训练出符合人类决策逻辑的智能体问题,提出了基于事件的奖励机制,合理引导智能体学习;最后在数字战场仿真环境中验证了所提方法的可行性和优越性。 展开更多
关键词 深度强化学习 任务分配 多智能体系统 决策风格
在线阅读 下载PDF
基于模态分解与多任务学习模型的综合能源系统多元负荷短期预测 被引量:2
20
作者 张玉敏 孙猛 +3 位作者 吉兴全 叶平峰 杨明 蔡富东 《高电压技术》 北大核心 2025年第7期3488-3499,I0007-I0009,共15页
为解决综合能源系统(integrated energy system,IES)多元负荷序列间耦合特性紧密复杂、准确预测难度较大的问题,提出一种基于模态分解与多任务学习模型的IES多元负荷短期预测方法。首先,为处理原始负荷序列的强随机性特征,采用多元变分... 为解决综合能源系统(integrated energy system,IES)多元负荷序列间耦合特性紧密复杂、准确预测难度较大的问题,提出一种基于模态分解与多任务学习模型的IES多元负荷短期预测方法。首先,为处理原始负荷序列的强随机性特征,采用多元变分模态和样本熵将多元负荷序列同步分解重构出高、中、低3种频段的模态分量;其次,构建基于多头注意力机制的多任务学习混合预测模型动态分配耦合特征,对于复杂度较高的中高频序列,采用单编码器-多解码器结构的多任务Transformer模型充分挖掘负荷波动信息,对于低频序列,基于双向门控循环单元网络提取平稳分量特征。最后,将各分量预测结果叠加得到多元负荷最终预测结果。基于美国亚利桑那州立大学Tempe校区的多元负荷数据进行测试,结果表明:所提方法电、冷、热负荷平均绝对百分比误差分别为0.61%、0.80%及0.83%,相比其他模型具有更高的求解精度和计算效率。 展开更多
关键词 综合能源系统 多任务学习 多元变分模态分解 多头注意力机制 深度学习 负荷预测
原文传递
上一页 1 2 33 下一页 到第
使用帮助 返回顶部