Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-...Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.展开更多
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches...The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development.展开更多
This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement ...This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.展开更多
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr...Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.展开更多
Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predispositio...Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency.展开更多
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as...As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.展开更多
Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–...Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD.展开更多
Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecas...Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering.展开更多
Staple crops are the cornerstone of the food supply but are frequently threatened by plant diseases.Effective disease management,including disease identification and severity assessment,helps to better address these c...Staple crops are the cornerstone of the food supply but are frequently threatened by plant diseases.Effective disease management,including disease identification and severity assessment,helps to better address these challenges.Currently,methods for disease severity assessment typically rely on calculating the area proportion of disease segmentation regions or using classification networks for severity assessment.However,these methods require large amounts of labeled data and fail to quantify lesion proportions when using classification networks,leading to inaccurate evaluations.To address these issues,we propose an automated framework for disease severity assessment that combines multi-task learning and knowledge-driven large-model segmentation techniques.This framework includes an image information processor,a lesion and leaf segmentation module,and a disease severity assessment module.First,the image information processor utilizes a multi-task learning strategy to analyze input images comprehensively,ensuring a deep understanding of disease characteristics.Second,the lesion and leaf segmentation module employ prompt-driven large-model technology to accurately segment diseased areas and entire leaves,providing detailed visual analysis.Finally,the disease severity assessment module objectively evaluates the severity of the disease based on professional grading standards by calculating lesion area proportions.Additionally,we have developed a comprehensive database of diseased leaf images from major crops,including several task-specific datasets.Experimental results demonstrate that our framework can accurately identify and assess the types and severity of crop diseases,even without extensive labeled data.Codes and data are available at http://dkp-ads.samlab.cn/.展开更多
Satellite communication technology has emerged as a key solution to address the challenges of data transmission in remote areas.By overcoming the limitations of traditional terrestrial communication networks,it enable...Satellite communication technology has emerged as a key solution to address the challenges of data transmission in remote areas.By overcoming the limitations of traditional terrestrial communication networks,it enables long-distance data transmission anytime and anywhere,ensuring the timely and accurate delivery of water level data,which is particularly crucial for fishway water level monitoring.To enhance the effectiveness of fishway water level monitoring,this study proposes a multi-task learning model,AS-SOMTF,designed for real-time and comprehensive prediction.The model integrates auxiliary sequences with primary input sequences to capture complex relationships and dependencies,thereby improving representational capacity.In addition,a novel timeseries embedding algorithm,AS-SOM,is introduced,which combines generative inference and pooling operations to optimize prediction efficiency for long sequences.This innovation not only ensures the timely transmission of water level data but also enhances the accuracy of real-time monitoring.Compared with traditional models such as Transformer and Long Short-Term Memory(LSTM)networks,the proposed model achieves improvements of 3.8%and 1.4%in prediction accuracy,respectively.These advancements provide more precise technical support for water level forecasting and resource management in the Diqing Tibetan Autonomous Prefecture of the Lancang River,contributing to ecosystem protection and improved operational safety.展开更多
Guangdong Han Opera,known as the“Peony of the South,”is a treasured art form with a history of over 300 years.As one of the three major opera genres in Guangdong,it primarily uses Pi and Huang tuning,incorporating K...Guangdong Han Opera,known as the“Peony of the South,”is a treasured art form with a history of over 300 years.As one of the three major opera genres in Guangdong,it primarily uses Pi and Huang tuning,incorporating Kunqu,Gaoqiang,Chuiqiang,and minor tunes,with Zhongzhou rhyme as its stage language.The roles are divided into seven categories:Sheng,Dan,Chou,Gong,Po,and Jing(including Hongjing and Wujing).Its accompaniment instruments,particularly the Touxian,Dasuluo,and Haotou,are distinctive,making it an excellent Pi and Huang opera genre in southern China.In 2008,Guangdong Han Opera was listed in the national intangible cultural heritage,recognizing its artistic value and entrusting it with the mission of inheriting and developing this opera genre.This paper focuses on the Guangdong Han Opera“Wang Zhaojun”and employs methods such as literature review and case analysis to explore its achievements in secondary creation and artistic innovation.The opera has achieved innovations in script,character,music,and stagecraft,and made breakthroughs in performance form,narrative technique,and cultural connotation,promoting the inheritance and development of Guangdong Han Opera and providing insights into contemporary drama innovation.展开更多
Hainan boasts unique natural and cultural resources,offering tremendous potential for development in the tourism performance sector.This paper delves into the significance and value of creating a regional brand for Ha...Hainan boasts unique natural and cultural resources,offering tremendous potential for development in the tourism performance sector.This paper delves into the significance and value of creating a regional brand for Hainan’s tourism performances.Based on an analysis of the current state of Hainan’s tourism performance,it explores the challenges faced and proposes a multi-faceted approach to building a regional brand,including resource integration,product innovation,brand communication,and talent cultivation.The aim is to promote high-quality development in Hainan’s tourism performance industry,enhance the cultural appeal and market competitiveness of Hainan’s tourism,and support the construction of Hainan as an international center for tourism consumption.展开更多
With the acceleration of global aging,the population aged 60 and above in China has exceeded 280 million,and the contradiction between the digital skills demands of the elderly and the supply of static and universal e...With the acceleration of global aging,the population aged 60 and above in China has exceeded 280 million,and the contradiction between the digital skills demands of the elderly and the supply of static and universal educational resources has become prominent.This article conducts an in-depth study on the“on-demand creation”model of elderly education resource services driven by generative AI.This study proposes an“on-demand creation”service paradigm based on generative AI,providing suitable resources for elderly intelligent life skills training through demand perception,content generation,and dynamic optimization mechanisms.From the perspective of technological philosophy and service science,deconstruct the core element logic of the paradigm to demonstrate its dual value in reconstructing the theoretical framework of elderly education and promoting practical transformation.This research indicates that this paradigm provides systematic theoretical support for the innovation of elderly education services through a balance between technological empowerment and humanistic care,helping the elderly master modern information technology and life skills,enhancing their self-care ability and social participation,and better adapting to life in the digital age.展开更多
Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumpt...Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning.展开更多
This article explores the styles and characteristics of thematic art creation in Hong Kong,Macao,and Taiwan regions,analyzing the uniqueness of these regions’artistic backgrounds,artistic languages,theme selections,a...This article explores the styles and characteristics of thematic art creation in Hong Kong,Macao,and Taiwan regions,analyzing the uniqueness of these regions’artistic backgrounds,artistic languages,theme selections,and expressive techniques.The art creation in Hong Kong,Macao,and Taiwan regions is deeply influenced by traditional Chinese culture while incorporating Western artistic elements,exhibiting a diversified artistic style.Thematic art creation in these three regions has its own distinct features,including a deep exploration of local culture and a sensitive capture of the spirit of the times,which together constitute a rich and colorful artistic landscape in Hong Kong,Macao,and Taiwan regions.展开更多
In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interl...In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets(C_(1D@2D))network.A groundbreaking chemical fermentation(CF)pore-generation mechanism,proposed for the first time for creating nanopores within carbon structures,is based on the optimal balance between gasification and solidification.This mechanism not only results in a distinctive C_(1D@2D) multilevel network with nanoscale,intersecting and freely flowing channels but also introduces a novel concept for in situ,extensive and hierarchical pore formation.The unique architecture,combined with the homogeneous dispersion of Ni-Fe nanoparticles,facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions.Consequently,the Ni-Fe@C_(1D@2D) porous network demonstrates an exceptional OER electrocatalytic performance,achieving a record-low overpotential of 165 mV at 10 mA cm^(−2)and maintaining long-term stability for over 90 h.Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix,thereby significantly boosting their electrocatalytic activity and stability.These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.展开更多
In the rapidly evolving landscape of digital health,the integration of data analytics and Internet healthserviceshasbecome a pivotal area of exploration.To meet keen social needs,Prof.Shan Liu(Xi'an Jiaotong Unive...In the rapidly evolving landscape of digital health,the integration of data analytics and Internet healthserviceshasbecome a pivotal area of exploration.To meet keen social needs,Prof.Shan Liu(Xi'an Jiaotong University)and Prof.Xing Zhang(Wuhan Textile University)have published the timely book Datadriven Internet Health Platform Service Value Co-creation through China Science Press.The book focuses on the provision of medical and health services from doctors to patients through Internet health platforms,where the service value is co-created by three parties.展开更多
This paper grasps the research theme of artificial intelligence(AI)and human intelligence(HI)synergy to create value,and analyzes the development status of AI and HI in the current context of digital intelligence,as w...This paper grasps the research theme of artificial intelligence(AI)and human intelligence(HI)synergy to create value,and analyzes the development status of AI and HI in the current context of digital intelligence,as well as the significance of their synergy to empower value creation.At the same time,the theory of resource arrangement is introduced,and the connotation and composition of the theory are summarized,as well as the development in the field of research and application.This paper focuses on revealing the intrinsic relationship between resource orchestration theory and AI and HI collaborative work,aiming to fully explore the potential of resource orchestration theory in the collaborative innovation of AI and HI,and put forward practical suggestions based on this.展开更多
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金The National Natural Science Foundation of China(62136008,62293541)The Beijing Natural Science Foundation(4232056)The Beijing Nova Program(20240484514).
文摘Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.
基金supported by the research on key technologies for monitoring and identifying drug abuse of anesthetic drugs and psychotropic drugs,and intervention for addiction(No.2023YFC3304200)the program of a study on the diagnosis of addiction to synthetic cannabinoids and methods of assessing the risk of abuse(No.2022YFC3300905)+1 种基金the program of Ab initio design and generation of AI models for small molecule ligands based on target structures(No.2022PE0AC03)ZHIJIANG LAB.
文摘The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development.
基金the National Natural Science Foundation of China(Grant No.:71771061).
文摘This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42075138 and 42375147)the Program on Key Basic Research Project of Jiangsu(Grant No.BE2023829)。
文摘Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.
基金funded by the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency.
基金supported by the Key Research and Development Program of Heilongjiang Province(No.2022ZX01A35).
文摘As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030708,42375138,42030608,42105128,42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,China Meteorological Administration(CMA),and the CMA Research Center on Meteorological Observation Engineering Technology(Grant No.U2021Z03),and the Opening Foundation of the Key Laboratory of Atmospheric Chemistry,CMA(Grant No.2022B02)。
文摘Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD.
基金the National Key Research and Development Plan of China[Grant No.2023YFB3002400]the Shanghai 2021 Natural Science Foundation[Grant Nos.21ZR1420400 and 21ZR1419800]+1 种基金the Shanghai 2023 Natural Science Foundation[Grant No.23ZR1463000]the Shandong Provincial Meteorological Bureau Scientific Research Project[Grant No.2023SDBD05].
文摘Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering.
基金supported by the National Key Research and Development Program of China (2024YFD2001100,2024YFE0214300)the National Natural Science Foundation of China (62162008)+3 种基金Guizhou Provincial Science and Technology Projects ([2024]002, CXTD[2023]027)Guizhou Province Youth Science and Technology Talent Project ([2024]317)Guiyang Guian Science and Technology Talent Training Project ([2024]2-15)the Guizhou Province Graduate Education Innovation Program Project (2024YJSKYJJ096)
文摘Staple crops are the cornerstone of the food supply but are frequently threatened by plant diseases.Effective disease management,including disease identification and severity assessment,helps to better address these challenges.Currently,methods for disease severity assessment typically rely on calculating the area proportion of disease segmentation regions or using classification networks for severity assessment.However,these methods require large amounts of labeled data and fail to quantify lesion proportions when using classification networks,leading to inaccurate evaluations.To address these issues,we propose an automated framework for disease severity assessment that combines multi-task learning and knowledge-driven large-model segmentation techniques.This framework includes an image information processor,a lesion and leaf segmentation module,and a disease severity assessment module.First,the image information processor utilizes a multi-task learning strategy to analyze input images comprehensively,ensuring a deep understanding of disease characteristics.Second,the lesion and leaf segmentation module employ prompt-driven large-model technology to accurately segment diseased areas and entire leaves,providing detailed visual analysis.Finally,the disease severity assessment module objectively evaluates the severity of the disease based on professional grading standards by calculating lesion area proportions.Additionally,we have developed a comprehensive database of diseased leaf images from major crops,including several task-specific datasets.Experimental results demonstrate that our framework can accurately identify and assess the types and severity of crop diseases,even without extensive labeled data.Codes and data are available at http://dkp-ads.samlab.cn/.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029The Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2024-00396797,Development of core technology for intelligent O-RAN security platform).
文摘Satellite communication technology has emerged as a key solution to address the challenges of data transmission in remote areas.By overcoming the limitations of traditional terrestrial communication networks,it enables long-distance data transmission anytime and anywhere,ensuring the timely and accurate delivery of water level data,which is particularly crucial for fishway water level monitoring.To enhance the effectiveness of fishway water level monitoring,this study proposes a multi-task learning model,AS-SOMTF,designed for real-time and comprehensive prediction.The model integrates auxiliary sequences with primary input sequences to capture complex relationships and dependencies,thereby improving representational capacity.In addition,a novel timeseries embedding algorithm,AS-SOM,is introduced,which combines generative inference and pooling operations to optimize prediction efficiency for long sequences.This innovation not only ensures the timely transmission of water level data but also enhances the accuracy of real-time monitoring.Compared with traditional models such as Transformer and Long Short-Term Memory(LSTM)networks,the proposed model achieves improvements of 3.8%and 1.4%in prediction accuracy,respectively.These advancements provide more precise technical support for water level forecasting and resource management in the Diqing Tibetan Autonomous Prefecture of the Lancang River,contributing to ecosystem protection and improved operational safety.
基金This work was supported by the sub-topic“Research on Language Folklore Art”of the 2022 China National Social Science Fund Art Major Project“Theoretical and Practical Research on Chinese Art Folklore”(Moderator:Professor Bo Dong)’s phased research results(Grant No.22ZD06).
文摘Guangdong Han Opera,known as the“Peony of the South,”is a treasured art form with a history of over 300 years.As one of the three major opera genres in Guangdong,it primarily uses Pi and Huang tuning,incorporating Kunqu,Gaoqiang,Chuiqiang,and minor tunes,with Zhongzhou rhyme as its stage language.The roles are divided into seven categories:Sheng,Dan,Chou,Gong,Po,and Jing(including Hongjing and Wujing).Its accompaniment instruments,particularly the Touxian,Dasuluo,and Haotou,are distinctive,making it an excellent Pi and Huang opera genre in southern China.In 2008,Guangdong Han Opera was listed in the national intangible cultural heritage,recognizing its artistic value and entrusting it with the mission of inheriting and developing this opera genre.This paper focuses on the Guangdong Han Opera“Wang Zhaojun”and employs methods such as literature review and case analysis to explore its achievements in secondary creation and artistic innovation.The opera has achieved innovations in script,character,music,and stagecraft,and made breakthroughs in performance form,narrative technique,and cultural connotation,promoting the inheritance and development of Guangdong Han Opera and providing insights into contemporary drama innovation.
基金Philosophy and Social Planning Project of Haikou City in 2025‘An Exploratory Study on Accelerating the Construction of“International Performing Arts Capital”in Haikou Under the Background of Hainan Free Trade Port’(Project No.:2025-ZCKT-96)。
文摘Hainan boasts unique natural and cultural resources,offering tremendous potential for development in the tourism performance sector.This paper delves into the significance and value of creating a regional brand for Hainan’s tourism performances.Based on an analysis of the current state of Hainan’s tourism performance,it explores the challenges faced and proposes a multi-faceted approach to building a regional brand,including resource integration,product innovation,brand communication,and talent cultivation.The aim is to promote high-quality development in Hainan’s tourism performance industry,enhance the cultural appeal and market competitiveness of Hainan’s tourism,and support the construction of Hainan as an international center for tourism consumption.
文摘With the acceleration of global aging,the population aged 60 and above in China has exceeded 280 million,and the contradiction between the digital skills demands of the elderly and the supply of static and universal educational resources has become prominent.This article conducts an in-depth study on the“on-demand creation”model of elderly education resource services driven by generative AI.This study proposes an“on-demand creation”service paradigm based on generative AI,providing suitable resources for elderly intelligent life skills training through demand perception,content generation,and dynamic optimization mechanisms.From the perspective of technological philosophy and service science,deconstruct the core element logic of the paradigm to demonstrate its dual value in reconstructing the theoretical framework of elderly education and promoting practical transformation.This research indicates that this paradigm provides systematic theoretical support for the innovation of elderly education services through a balance between technological empowerment and humanistic care,helping the elderly master modern information technology and life skills,enhancing their self-care ability and social participation,and better adapting to life in the digital age.
基金supported by the National Natural Science Foundation of China(No.52474435)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202307).
文摘Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning.
文摘This article explores the styles and characteristics of thematic art creation in Hong Kong,Macao,and Taiwan regions,analyzing the uniqueness of these regions’artistic backgrounds,artistic languages,theme selections,and expressive techniques.The art creation in Hong Kong,Macao,and Taiwan regions is deeply influenced by traditional Chinese culture while incorporating Western artistic elements,exhibiting a diversified artistic style.Thematic art creation in these three regions has its own distinct features,including a deep exploration of local culture and a sensitive capture of the spirit of the times,which together constitute a rich and colorful artistic landscape in Hong Kong,Macao,and Taiwan regions.
基金supported by the National Natural Science Foundation of China(Grant No.22275082 and 22175084).
文摘In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction(OER),a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets(C_(1D@2D))network.A groundbreaking chemical fermentation(CF)pore-generation mechanism,proposed for the first time for creating nanopores within carbon structures,is based on the optimal balance between gasification and solidification.This mechanism not only results in a distinctive C_(1D@2D) multilevel network with nanoscale,intersecting and freely flowing channels but also introduces a novel concept for in situ,extensive and hierarchical pore formation.The unique architecture,combined with the homogeneous dispersion of Ni-Fe nanoparticles,facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions.Consequently,the Ni-Fe@C_(1D@2D) porous network demonstrates an exceptional OER electrocatalytic performance,achieving a record-low overpotential of 165 mV at 10 mA cm^(−2)and maintaining long-term stability for over 90 h.Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix,thereby significantly boosting their electrocatalytic activity and stability.These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.
文摘In the rapidly evolving landscape of digital health,the integration of data analytics and Internet healthserviceshasbecome a pivotal area of exploration.To meet keen social needs,Prof.Shan Liu(Xi'an Jiaotong University)and Prof.Xing Zhang(Wuhan Textile University)have published the timely book Datadriven Internet Health Platform Service Value Co-creation through China Science Press.The book focuses on the provision of medical and health services from doctors to patients through Internet health platforms,where the service value is co-created by three parties.
文摘This paper grasps the research theme of artificial intelligence(AI)and human intelligence(HI)synergy to create value,and analyzes the development status of AI and HI in the current context of digital intelligence,as well as the significance of their synergy to empower value creation.At the same time,the theory of resource arrangement is introduced,and the connotation and composition of the theory are summarized,as well as the development in the field of research and application.This paper focuses on revealing the intrinsic relationship between resource orchestration theory and AI and HI collaborative work,aiming to fully explore the potential of resource orchestration theory in the collaborative innovation of AI and HI,and put forward practical suggestions based on this.