期刊文献+
共找到25,921篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-target neural circuit reconstruction and enhancement in spinal cord injury 被引量:2
1
作者 Lingyun Cao Siyun Chen +2 位作者 Shuping Wang Ya Zheng Dongsheng Xu 《Neural Regeneration Research》 2026年第3期957-971,共15页
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim... After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions. 展开更多
关键词 multi-targets nerve root magnetic stimulation neural circuit NEUROMODULATION peripheral nerve stimulation RECONSTRUCTION spinal cord injury task-oriented training TIMING transcranial magnetic stimulation
暂未订购
PhishNet: A Real-Time, Scalable Ensemble Framework for Smishing Attack Detection Using Transformers and LLMs
2
作者 Abeer Alhuzali Qamar Al-Qahtani +2 位作者 Asmaa Niyazi Lama Alshehri Fatemah Alharbi 《Computers, Materials & Continua》 2026年第1期2194-2212,共19页
The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integra... The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integrates transformer-based models(RoBERTa)and large language models(LLMs)(GPT-OSS 120B,LLaMA3.370B,and Qwen332B)to enhance smishing detection performance significantly.To mitigate class imbalance,we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques.Our system employs a duallayer voting mechanism:weighted majority voting among LLMs and a final ensemble vote to classify messages as ham,spam,or smishing.Experimental results show an average accuracy improvement from 96%to 98.5%compared to the best standalone transformer,and from 93%to 98.5%when compared to LLMs across datasets.Furthermore,we present a real-time,user-friendly application to operationalize our detection model for practical use.PhishNet demonstrates superior scalability,usability,and detection accuracy,filling critical gaps in current smishing detection methodologies. 展开更多
关键词 Smishing attack detection phishing attacks ensemble learning CYBERSECURITY deep learning transformer-based models large language models
在线阅读 下载PDF
Unveiling Zero-Click Attacks: Mapping MITRE ATT&CK Framework for Enhanced Cybersecurity
3
作者 Md Shohel Rana Tonmoy Ghosh +2 位作者 Mohammad Nur Nobi Anichur Rahman Andrew HSung 《Computers, Materials & Continua》 2026年第1期29-66,共38页
Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulner... Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulnerabilities in software and communication protocols to silently gain access,exfiltrate data,and enable long-term surveillance.Their stealth and ability to evade traditional defenses make detection and mitigation highly challenging.This paper addresses these threats by systematically mapping the tactics and techniques of zero-click attacks using the MITRE ATT&CK framework,a widely adopted standard for modeling adversarial behavior.Through this mapping,we categorize real-world attack vectors and better understand how such attacks operate across the cyber-kill chain.To support threat detection efforts,we propose an Active Learning-based method to efficiently label the Pegasus spyware dataset in alignment with the MITRE ATT&CK framework.This approach reduces the effort of manually annotating data while improving the quality of the labeled data,which is essential to train robust cybersecurity models.In addition,our analysis highlights the structured execution paths of zero-click attacks and reveals gaps in current defense strategies.The findings emphasize the importance of forward-looking strategies such as continuous surveillance,dynamic threat profiling,and security education.By bridging zero-click attack analysis with the MITRE ATT&CK framework and leveraging machine learning for dataset annotation,this work provides a foundation for more accurate threat detection and the development of more resilient and structured cybersecurity frameworks. 展开更多
关键词 Bluebugging bluesnarfing CYBERSECURITY MITRE ATT&CK PEGASUS simjacker zero-click attacks
在线阅读 下载PDF
A Novel Unsupervised Structural Attack and Defense for Graph Classification
4
作者 Yadong Wang Zhiwei Zhang +2 位作者 Pengpeng Qiao Ye Yuan Guoren Wang 《Computers, Materials & Continua》 2026年第1期1761-1782,共22页
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev... Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations. 展开更多
关键词 Graph classification graph neural networks adversarial attack
在线阅读 下载PDF
Gradient-Guided Assembly Instruction Relocation for Adversarial Attacks Against Binary Code Similarity Detection
5
作者 Ran Wei Hui Shu 《Computers, Materials & Continua》 2026年第1期1372-1394,共23页
Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Althoug... Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC. 展开更多
关键词 Assembly instruction relocation adversary attack binary code similarity detection
在线阅读 下载PDF
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
6
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection IoT environment
在线阅读 下载PDF
Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning
7
作者 Misbah Anwer Ghufran Ahmed +3 位作者 Maha Abdelhaq Raed Alsaqour Shahid Hussain Adnan Akhunzada 《Computers, Materials & Continua》 2026年第1期744-758,共15页
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an... The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security. 展开更多
关键词 Cyber-attack intrusion detection system(IDS) deep federated learning(DFL) zero-day attack distributed denial of services(DDoS) MULTI-CLASS Internet of Things(IoT)
在线阅读 下载PDF
MULTI-FIGHTER COORDINATED MULTI-TARGET ATTACK SYSTEM 被引量:7
8
作者 耿延洛 姜长生 李伟浩 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期18-23,共6页
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ... A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter. 展开更多
关键词 multi-target attack coordinated airfight decision missile attack area priority fire control
在线阅读 下载PDF
Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack 被引量:5
9
作者 Yu Zhang Jing Chen Lincheng Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第4期536-552,共17页
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu... This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes. 展开更多
关键词 hierarchical trajectory planning air-to-surface multi-target attack (A/SMTA) traveling salesman problem (TSP) proba-bilistic roadmap Gauss pseudospectral method unmanned com-bat aerial vehicle (UCAV).
在线阅读 下载PDF
Guidance laws for attacking defended target 被引量:8
10
作者 Qilong SUN Chenfeng ZHANG +2 位作者 Ning LIU Weixue ZHOU Naiming QI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第10期2337-2353,共17页
In this paper,two new guidance laws based on differential game theory are proposed and investigated for the attacker in an attacker-defender-target scenario.The conditions for the attacker winning the game are analyze... In this paper,two new guidance laws based on differential game theory are proposed and investigated for the attacker in an attacker-defender-target scenario.The conditions for the attacker winning the game are analyzed when the target and defender using the differential game guidance law based on the linear model.The core ideas underlying the two guidance laws are the attacker evading to a critical safe boundary from the defender,and then maintaining a critical miss distance.The guidance law more appropriate for the attacker to win the game differs according to the initial parameters.Unlike other guidance laws,when using the derived guidance laws there is no need to know the target and the defender’s control efforts.The results of numerical simulations show that the attacker can evade the defender and hit the target successfully by using the proposed derived guidance laws. 展开更多
关键词 attacking Control EFFORT Differential GAME theory GUIDANCE LAW MISS DISTANCE
原文传递
Effects of Rebixiao Granules (热痹消颗粒剂) on Blood Uric Acid in Patients with Repeatedly Attacking Acute Gouty Arthritis 被引量:2
11
作者 纪伟 朱萱萱 +1 位作者 谈文峰 陆燕 《Chinese Journal of Integrated Traditional and Western Medicine》 2005年第1期15-21,共7页
Objective: To observe the clinical effect of Rebixiao granule (热痹消颗粒剂, RBXG) in treating repeatedly attacking acute gouty arthritis and through experimental study on blood uric acid to explore RBXG's therape... Objective: To observe the clinical effect of Rebixiao granule (热痹消颗粒剂, RBXG) in treating repeatedly attacking acute gouty arthritis and through experimental study on blood uric acid to explore RBXG's therapeutic mechanism. Methods: Ninety repeatedly attacking acute gouty arthritis patients were divided into the treated group ( n =60) and control group ( n =30). The treated group was treated with RBXG, and the control group was treated with Futalin tablets (diclofenac sodium). The baseline treatment including good rest, low purine diet, sufficient water drinking and urine alkalization, etc. was then given to both groups. Hypoxanthine 600 mg/kg and niacin 100 mg/kg was applied to hyperuricemic mice by gastrogavage to establish the animal models. Results: The clinical effective rate of the treated group was 95.0% and that of the control 90.0%. Good therapeutic effects were won, insignificant difference ( P >0.05)was shown between the two groups. However, the cure rate of the treated group was 26.7% while that of the control group was 10.0%, with significant difference ( P <0.01) shown between them. The treated group had its blood uric acid lowered, which was significantly different ( P <0.05) from that of the control group. The animal experiment indicated that all the three groups treated with different dosages of RBXG, as well as the Ash bark and Smilax glabra rhizome groups had their blood uric acid content reduced in the hyperuricemic mice. Conclusion: RBXG has a quicker initiation and better treatment effects than sole anti-inflammatory and analgesic agents on the treatment of repeatedly attacking acute gouty arthritis, showing no obvious toxic or adverse reactions and therefore good for long-term administration and likely to be a safe TCM preparation to control the symptoms and reduce the onsets of repeatedly attacking of acute gouty arthritis. The animal experiment shows that both the compound preparation and part of the single ingredients in the recipe have the function of reducing blood uric acid. However, the compound recipe has better therapeutic effects, proving to be superior to single drugs. 展开更多
关键词 traditional Chinese medicine compound repeatedly attacking acute gouty arthritis TREATMENT
暂未订购
A Fast Two-Stage Black-Box Deep Learning Network Attacking Method Based on Cross-Correlation 被引量:1
12
作者 Deyin Li Mingzhi Cheng +2 位作者 Yu Yang Min Lei Linfeng Shen 《Computers, Materials & Continua》 SCIE EI 2020年第7期623-635,共13页
Deep learning networks are widely used in various systems that require classification.However,deep learning networks are vulnerable to adversarial attacks.The study on adversarial attacks plays an important role in de... Deep learning networks are widely used in various systems that require classification.However,deep learning networks are vulnerable to adversarial attacks.The study on adversarial attacks plays an important role in defense.Black-box attacks require less knowledge about target models than white-box attacks do,which means black-box attacks are easier to launch and more valuable.However,the state-of-arts black-box attacks still suffer in low success rates and large visual distances between generative adversarial images and original images.This paper proposes a kind of fast black-box attack based on the cross-correlation(FBACC)method.The attack is carried out in two stages.In the first stage,an adversarial image,which would be missclassified as the target label,is generated by using gradient descending learning.By far the image may look a lot different than the original one.Then,in the second stage,visual quality keeps getting improved on the condition that the label keeps being missclassified.By using the cross-correlation method,the error of the smooth region is ignored,and the number of iterations is reduced.Compared with the proposed black-box adversarial attack methods,FBACC achieves a better fooling rate and fewer iterations.When attacking LeNet5 and AlexNet respectively,the fooling rates are 100%and 89.56%.When attacking them at the same time,the fooling rate is 69.78%.FBACC method also provides a new adversarial attack method for the study of defense against adversarial attacks. 展开更多
关键词 Black-box adversarial attack CROSS-CORRELATION two-module
在线阅读 下载PDF
Attacking Strategy of Multiple Unmanned Surface Vehicles with Improved GWO Algorithm Under Control of Unmanned Aerial Vehicles 被引量:2
13
作者 WU Xin PU Juan XIE Shaorong 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第2期201-207,共7页
Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role i... Unmanned combat system is one of the important means to capture information superiority,carry out precision strike and accomplish special combat tasks in information war.Unmanned attack strategy plays a crucial role in unmanned combat system,which has to ensure the attack by unmanned surface vehicles(USVs)from failure.To meet the challenge,we propose a task allocation algorithm called distributed auction mechanism task allocation with grey wolf optimization(DAGWO).The traditional grey wolf optimization(GWO)algorithm is improved with a distributed auction mechanism(DAM)to constrain the initialization of wolves,which improves the optimization process according to the actual situation.In addition,one unmanned aerial vehicle(UAV)is employed as the central control system to establish task allocation model and construct fitness function for the multiple constraints of USV attack problem.The proposed DAGWO algorithm can not only ensure the diversity of wolves,but also avoid the local optimum problem.Simulation results show that the proposed DAGWO algorithm can effectively solve the problem of attack task allocation among multiple USVs. 展开更多
关键词 unmanned surface vehicle(USV) attack strategy GREY WOLF optimization(GWO) task ALLOCATION unmanned AERIAL vehicle(UAV)
原文传递
Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
14
作者 Ge-Hai Du Hong-Wei Li +1 位作者 Yang Wang Wan-Su Bao 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第9期87-92,共6页
The unconditional security of quantum key distribution(QKD) can be guaranteed by the nature of quantum physics.Compared with the traditional two-dimensional BB84 QKD protocol, high-dimensional quantum key distribution... The unconditional security of quantum key distribution(QKD) can be guaranteed by the nature of quantum physics.Compared with the traditional two-dimensional BB84 QKD protocol, high-dimensional quantum key distribution(HDQKD) can be applied to generate much more secret key.Nonetheless, practical imperfections in realistic systems can be exploited by the third party to eavesdrop the secret key.The practical beam splitter has a correlation with wavelength,where different wavelengths have different coupling ratios.Using this property, we propose a wavelength-dependent attack towards time-bin high-dimensional QKD system.What is more, we demonstrate that this attacking protocol can be applied to arbitrary d-dimensional QKD system, and higher-dimensional QKD system is more vulnerable to this attacking strategy. 展开更多
关键词 HIGH-DIMENSIONAL quantum key distribution beam SPLITTER wavelength attack
原文传递
Effect of Polymer-based Grinding Aid on Sulfate Attacking Resistance of Concrete
15
作者 张太龙 HU Jingchao +1 位作者 高建明 SUN Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1095-1100,共6页
Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca ele... Influences of polymer-based grinding aid(PGA) on the damage process of concrete exposed to sulfate attack under dry-wet cycles were investigated. The mass loss, dynamic modulus of elasticity(Erd), and S and Ca element contents of concrete specimens were measured. Scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP), and X-ray diffractometry(XRD) were used to investigate the changing of microstructure of interior concrete. The results indicated that PGA was capable of reducing the mass loss and improving the sulfate attack resistance of concrete. X-ray fluorescence(XRF) analysis revealed that PGA delayed the transport process of sulfate ions and Ca ions. In addition, MIP analysis disclosed that the micropores of concrete with PGA increased in the fraction of 20-100 nm and decreased in the residues of 200 nm. Compared with the blank sample, concrete with PGA had more slender and well-organized hydration products, and no changes in hydration products ratio or type were observed. 展开更多
关键词 polymer-based grinding aid concrete sulfate attack microstructure
原文传递
Molecule aging induced by electron attacking
16
作者 Ping Song Yining Dong +5 位作者 Xue Gong Mingbo Ruan Baoxin Ni Xuanhao Mei Kun Jiang Weilin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期519-525,I0013,共8页
Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"... Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"or loss of unknown tiny particles does not change apparently its molecular structure or chemical composition,but some physicochemical properties could be changed irreversibly.We further confirm such"molecule aging"via a long-term electron attacking to age water(H_(2)O)molecules.The IR spectra show no structural difference between the fresh water and the aged one,while the NMR spectra show that the electron attacking can decrease the size of water clusters.Such facts indicate that the electron attacking indeed can"affect"the structure of water molecule slightly but without damaging to its basic molecule frame.Further exploration reveals that the hydrogen evolution reaction(HER)activity of the aged water molecule is lower than the fresh water on the same Pt/C electrocatalyst.The density functional theory calculations indicate that the shortened O-H bond in H_(2)O indeed can present lower HER activity,so the observed size decrease of water clusters from NMR probably could be attributed to the shortening of O-H bond in water molecules.Such results indicate significantly that the molecule aging can produce materials with new functions for new possible applications. 展开更多
关键词 Aging of molecules Electron attacking Full width at half maxima Hydrogen evolution reaction
在线阅读 下载PDF
ICPS multi-target constrained comprehensive security control based on DoS attacks energy grading detection and compensation
17
作者 HAN Yinlong HAN Xiaowu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期518-531,共14页
Aiming at the industry cyber-physical system(ICPS)where Denial-of-Service(DoS)attacks and actuator failure coexist,the integrated security control problem of ICPS under multi-objective constraints was studied.First,fr... Aiming at the industry cyber-physical system(ICPS)where Denial-of-Service(DoS)attacks and actuator failure coexist,the integrated security control problem of ICPS under multi-objective constraints was studied.First,from the perspective of the defender,according to the differential impact of the system under DoS attacks of different energies,the DoS attacks energy grading detection standard was formulated,and the ICPS comprehensive security control framework was constructed.Secondly,a security transmission strategy based on event triggering was designed.Under the DoS attack energy classification detection mechanism,for large-energy attacks,the method based on time series analysis was considered to predict and compensate for lost data.Therefore,on the basis of passive and elastic response to small energy attacks,the active defense capability against DoS attacks was increased.Then by introducing the conecomplement linearization algorithm,the calculation methods of the state and fault estimation observer and the integrated safety controller were deduced,the goal of DoS attack active and passive hybrid intrusion tolerance and actuator failure active fault tolerance were realized.Finally,a simulation example of a four-capacity water tank system was given to verify the validity of the obtained conclusions. 展开更多
关键词 industry cyber-physical system(ICPS) Denial-of-Service(DoS)attacks energy grading detection security event triggering mechanism time series analysis methods cone complementary linearization
在线阅读 下载PDF
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
18
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
CSRWA:Covert and Severe Attacks Resistant Watermarking Algorithm
19
作者 Balsam Dhyia Majeed Amir Hossein Taherinia +1 位作者 Hadi Sadoghi Yazdi Ahad Harati 《Computers, Materials & Continua》 SCIE EI 2025年第1期1027-1047,共21页
Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resi... Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resistant to intentional or unintentional modification.Some of these features are important perceptual features according to the human visual system(HVS),which means that the embedded watermark should be imperceptible in these features.Therefore,both the designers of watermarking algorithms and potential attackers must consider these perceptual features when carrying out their actions.The two roles will be considered in this paper when designing a robust watermarking algorithm against the most harmful attacks,like volumetric scaling,histogram equalization,and non-conventional watermarking attacks like the Denoising Convolution Neural Network(DnCNN),which must be considered in watermarking algorithm design due to its rising role in the state-of-the-art attacks.The DnCNN is initialized and trained using watermarked image samples created by our proposed Covert and Severe Attacks Resistant Watermarking Algorithm(CSRWA)to prove its robustness.For this algorithm to satisfy the robustness and imperceptibility tradeoff,implementing the Dither Modulation(DM)algorithm is boosted by utilizing the Just Noticeable Distortion(JND)principle to get an improved performance in this sense.Sensitivity,luminance,inter and intra-block contrast are used to adjust the JND values. 展开更多
关键词 Covert attack digital watermarking DnCNN JND perceptual model ROBUSTNESS
在线阅读 下载PDF
Anomaly Detection of Controllable Electric Vehicles through Node Equation against Aggregation Attack
20
作者 Jing Guo Ziying Wang +1 位作者 Yajuan Guo Haitao Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期427-442,共16页
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg... The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure. 展开更多
关键词 Anomaly detection electric vehicle aggregation attack deep cross-network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部