After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim...After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.展开更多
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu...The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.展开更多
Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localizati...Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localization.Compared to independent sensing and communication modules,dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains.When considering the communication core network,ISAC system facilitates multiple communication devices to collaborate for networked sensing.This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization.Specifically,we introduce a Time of Arrival(TOA)based multi-target localization scheme,which leverages the bi-static range measurements between the transmitter,target,and receiver channels in order to achieve elliptical localization.To obtain the low-complexity localization,a two-stage search-refine localization methodology is proposed.In the first stage,we propose a Successive Greedy Grid-Search(SGGS)algorithm and a Successive-Cancellation-List Grid-Search(SCLGS)algorithm to address the Measurement-to-Target Association(MTA)problem with relatively low computational complexity.In the second stage,a linear approximation refinement algorithm is derived to facilitate high-precision localization.Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.展开更多
Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunat...Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunately, in large-scale structures, the rigorous selection of reliable sensor candidates for multi-target responses remains largely unexplored. In this paper, we propose a flexible and generalized framework for selecting the most relevant sensors to the multi-target response and predicting the target response, referred to as the Fast-aware Multi-Target Response Prediction(FMTRP) approach in the spirit of divide-and-conquer. Specifically, first, a multi-task learning module is designed to predict multi-point response tasks at the same time. Simultaneously, we meticulously devise adaptive mechanisms to facilitate loss-term reweighting and encourage prioritization of challenging tasks in multiple prediction tasks. Second, to ensure ease of interpretation,we introduce a hybrid penalty to select sensors at the group-sparsity, individual-sparsity and element-sparsity levels. Finally, due to the substantial number of candidate sensors posing a significant computational burden, we develop a more efficient search strategy and support computation to make the proposed approach applicable in practice, leading to substantial runtime improvements. Extensive experiments on aircraft standard model response datasets and large airliner test flight datasets validate the effectiveness of the proposed approach in identifying sensor locations and simultaneously predicting responses at multiple points. Compared to state-of-the-art methods,the proposed approach achieves an accuracy of over 99% in sinusoidal excitation and exhibits the shortest runtime(3.514 s).展开更多
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learni...Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learning community.However,multi-target regression exists in many real-world applications.In this paper we conduct extensive experiments to investigate the performance of three representative multi-target regression learning algorithms(i.e.Multi-Target Stacking(MTS),Random Linear Target Combination(RLTC),and Multi-Objective Random Forest(MORF)),comparing the baseline single-target learning.Our experimental results show that all three multi-target regression learning algorithms do improve the performance of the single-target learning.Among them,MTS performs the best,followed by RLTC,followed by MORF.However,the single-target learning sometimes still performs very well,even the best.This analysis sheds the light on multi-target regression learning and indicates that the single-target learning is a competitive baseline for multi-target regression learning on multi-target domains.展开更多
In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy...In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical ...Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs.In this paper,50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database,and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time.Through the multi-target anti-cancer prediction system,some dominant fragments that act on multiple tumor-related targets were analyzed,which could be helpful in designing multi-target anti-cancer drugs.Anti-cancer traditional Chinese medicine(TCM)and its natural products were collected to form a TCM formula-based natural products library,and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system.As a result,alkaloids,flavonoids and terpenoids were predicted to act on multiple tumor-related targets.The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments.In conclusion,the multi-target anti-cancer prediction system is very effective and reliable,and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs.The anti-cancer natural compounds found in this paper will lay important information for further study.展开更多
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s...Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.展开更多
A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is establishe...A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.展开更多
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met...Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p...In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.展开更多
This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images ...This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images use matching features to estimate the essential matrix. The essential matrix is then decomposed into the relative rotation and normalized translation between frames. To be robust to noise and feature match outliers, these methods generate a large number of essential matrix hypotheses from randomly selected minimal subsets of feature pairs, and then score these hypotheses on all feature pairs. Alternatively, the algorithm introduced in this paper calculates relative pose hypotheses by directly optimizing the rotation and normalized translation between frames, rather than calculating the essential matrix and then performing the decomposition. The resulting algorithm improves computation time by an order of magnitude. If an inertial measurement unit(IMU) is available, it is used to seed the optimizer, and in addition, we reuse the best hypothesis at each iteration to seed the optimizer thereby reducing the number of relative pose hypotheses that must be generated and scored. These advantages greatly speed up performance and enable the algorithm to run in real-time on low cost embedded hardware. We show application of our algorithm to visual multi-target tracking(MTT) in the presence of parallax and demonstrate its real-time performance on a 640 × 480 video sequence captured on a UAV. Video results are available at https://youtu.be/Hh K-p2 h XNn U.展开更多
Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In ...Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios.展开更多
BACKGROUND Colorectal cancer(CRC)is a major global health burden.The current diagnostic tests have shortcomings of being invasive and low accuracy.AIM To explore the combination of intestinal microbiome composition an...BACKGROUND Colorectal cancer(CRC)is a major global health burden.The current diagnostic tests have shortcomings of being invasive and low accuracy.AIM To explore the combination of intestinal microbiome composition and multi-target stool DNA(MT-sDNA)test in the diagnosis of CRC.METHODS We assessed the performance of the MT-sDNA test based on a hospital clinical trial.The intestinal microbiota was tested using 16S rRNA gene sequencing.This case-control study enrolled 54 CRC patients and 51 healthy controls.We identified biomarkers of bacterial structure,analyzed the relationship between different tumor markers and the relative abundance of related flora components,and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size,redundancy analysis,and random forest analysis.RESULTS MT-sDNA was associated with Bacteroides.MT-sDNA and carcinoembryonic antigen(CEA)were positively correlated with the existence of Parabacteroides,and alpha-fetoprotein(AFP)was positively associated with Faecalibacterium and Megamonas.In the random forest model,the existence of Streptococcus,Escherichia,Chitinophaga,Parasutterella,Lachnospira,and Romboutsia can distinguish CRC from health controls.The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%,with a sensitivity and specificity of 98.1%and 92.3%,respectively.CONCLUSION There is a positive correlation of MT-sDNA,CEA,and AFP with intestinal microbiome.Eight biomarkers including six genera of gut microbiota,MT-sDNA,and CEA showed a prominent sensitivity and specificity for CRC prediction,which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.展开更多
Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive ...Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive processing method is presented and employed, and corresponding data association algorithms, i.e. a multi-objective ant-colony-based optimization algorithm and an easy fast assignment algorithm are developed to solve the measurements-to-measurements and measurements-to-tracks data association problems of bistatic sonar system, respectively. Monte-Carlo simulations are induced to evaluate the effectiveness of the proposed methods.展开更多
Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target paramet...Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.展开更多
This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. B...This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.展开更多
基金supported by the National Key Research and Development Program of China,No.2023YFC3603705(to DX)the National Natural Science Foundation of China,No.82302866(to YZ).
文摘After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.
基金the financial support provided by the National Natural Science Foundation of China(NSFC)(Grant No.62173274)the National Key R&D Program of China(Grant No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.PF2023046)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.
文摘Integrated Sensing and Communication(ISAC)is envisioned as a promising technology for Sixth-Generation(6G)wireless communications,which enables simultaneous high-rate communication and high-precision target localization.Compared to independent sensing and communication modules,dual-function ISAC could leverage the strengths of both communication and sensing in order to achieve cooperative gains.When considering the communication core network,ISAC system facilitates multiple communication devices to collaborate for networked sensing.This paper investigates such kind of cooperative ISAC systems with distributed transmitters and receivers to support non-connected and multi-target localization.Specifically,we introduce a Time of Arrival(TOA)based multi-target localization scheme,which leverages the bi-static range measurements between the transmitter,target,and receiver channels in order to achieve elliptical localization.To obtain the low-complexity localization,a two-stage search-refine localization methodology is proposed.In the first stage,we propose a Successive Greedy Grid-Search(SGGS)algorithm and a Successive-Cancellation-List Grid-Search(SCLGS)algorithm to address the Measurement-to-Target Association(MTA)problem with relatively low computational complexity.In the second stage,a linear approximation refinement algorithm is derived to facilitate high-precision localization.Simulation results are presented to validate the effectiveness and superiority of our proposed multi-target localization method.
基金sponsored by the Innovation Foundation for National Natural Science Foundation of China(No.11872312)。
文摘Response prediction is a fundamental yet challenging task in aeronautical engineering,requiring an accurate selection of sensor positions correlated with the target responses to achieve precise predictions. Unfortunately, in large-scale structures, the rigorous selection of reliable sensor candidates for multi-target responses remains largely unexplored. In this paper, we propose a flexible and generalized framework for selecting the most relevant sensors to the multi-target response and predicting the target response, referred to as the Fast-aware Multi-Target Response Prediction(FMTRP) approach in the spirit of divide-and-conquer. Specifically, first, a multi-task learning module is designed to predict multi-point response tasks at the same time. Simultaneously, we meticulously devise adaptive mechanisms to facilitate loss-term reweighting and encourage prioritization of challenging tasks in multiple prediction tasks. Second, to ensure ease of interpretation,we introduce a hybrid penalty to select sensors at the group-sparsity, individual-sparsity and element-sparsity levels. Finally, due to the substantial number of candidate sensors posing a significant computational burden, we develop a more efficient search strategy and support computation to make the proposed approach applicable in practice, leading to substantial runtime improvements. Extensive experiments on aircraft standard model response datasets and large airliner test flight datasets validate the effectiveness of the proposed approach in identifying sensor locations and simultaneously predicting responses at multiple points. Compared to state-of-the-art methods,the proposed approach achieves an accuracy of over 99% in sinusoidal excitation and exhibits the shortest runtime(3.514 s).
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
基金This research has been supported by the US National Science Foundation under grant IIS-1115417the National Natural Science Foundation of China under grant 61728205,61472267and Foundation of Key Laboratory in Science and Technology Development Project of Suzhou under grant SZS201609。
文摘Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables.It has received relatively small attention from the Machine Learning community.However,multi-target regression exists in many real-world applications.In this paper we conduct extensive experiments to investigate the performance of three representative multi-target regression learning algorithms(i.e.Multi-Target Stacking(MTS),Random Linear Target Combination(RLTC),and Multi-Objective Random Forest(MORF)),comparing the baseline single-target learning.Our experimental results show that all three multi-target regression learning algorithms do improve the performance of the single-target learning.Among them,MTS performs the best,followed by RLTC,followed by MORF.However,the single-target learning sometimes still performs very well,even the best.This analysis sheds the light on multi-target regression learning and indicates that the single-target learning is a competitive baseline for multi-target regression learning on multi-target domains.
基金supported by the National GNSS Research Center Program of the Defense Acquisition Program Administration and Agency for Defense Developmentthe Ministry of Science and ICT of the Republic of Korea through the Space Core Technology Development Program (No. NRF2018M1A3A3A02065722)
文摘In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.
基金supported by the National Great Science Technology Projects(2018ZX09711001-003-002,2018ZX09711001-012)the National Natural Science Foundation of China(No.81673480)+2 种基金the Beijing National Science Foundation(7192134)CAMS Initiative for Innovative Medicine(CAMS-IZM)(2016-IZM-3-007)CAMS Major collaborative innovation fund for major frontier research(2020-I2M-1-003).
文摘Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes,and multi-target drugs provide a promising therapy idea for the treatment of cancer.Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs.In this paper,50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database,and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time.Through the multi-target anti-cancer prediction system,some dominant fragments that act on multiple tumor-related targets were analyzed,which could be helpful in designing multi-target anti-cancer drugs.Anti-cancer traditional Chinese medicine(TCM)and its natural products were collected to form a TCM formula-based natural products library,and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system.As a result,alkaloids,flavonoids and terpenoids were predicted to act on multiple tumor-related targets.The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments.In conclusion,the multi-target anti-cancer prediction system is very effective and reliable,and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs.The anti-cancer natural compounds found in this paper will lay important information for further study.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2009FJ4030)supported by Academician Foundation of Hunan Province,China
文摘Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.
基金jointly granted by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China (No. 2016ZC15008)
文摘A decision-making problem of missile-target assignment with a novel particle swarm optimization algorithm is proposed when it comes to a multiple target collaborative combat situation.The threat function is established to describe air combat situation.Optimization function is used to find an optimal missile-target assignment.An improved particle swarm optimization algorithm is utilized to figure out the optimization function with less parameters,which is based on the adaptive random learning approach.According to the coordinated attack tactics,there are some adjustments to the assignment.Simulation example results show that it is an effective algorithm to handle with the decision-making problem of the missile-target assignment(MTA)in air combat.
基金supported by the National Natural Science Foundation of China (11472214)。
文摘Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.
文摘In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.
基金funded by the Center for Unmanned Aircraft Systems(C-UAS)a National Science Foundation Industry/University Cooperative Research Center(I/UCRC)under NSF award Numbers IIP-1161036 and CNS-1650547along with significant contributions from C-UAS industry members。
文摘This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images use matching features to estimate the essential matrix. The essential matrix is then decomposed into the relative rotation and normalized translation between frames. To be robust to noise and feature match outliers, these methods generate a large number of essential matrix hypotheses from randomly selected minimal subsets of feature pairs, and then score these hypotheses on all feature pairs. Alternatively, the algorithm introduced in this paper calculates relative pose hypotheses by directly optimizing the rotation and normalized translation between frames, rather than calculating the essential matrix and then performing the decomposition. The resulting algorithm improves computation time by an order of magnitude. If an inertial measurement unit(IMU) is available, it is used to seed the optimizer, and in addition, we reuse the best hypothesis at each iteration to seed the optimizer thereby reducing the number of relative pose hypotheses that must be generated and scored. These advantages greatly speed up performance and enable the algorithm to run in real-time on low cost embedded hardware. We show application of our algorithm to visual multi-target tracking(MTT) in the presence of parallax and demonstrate its real-time performance on a 640 × 480 video sequence captured on a UAV. Video results are available at https://youtu.be/Hh K-p2 h XNn U.
基金supported by the National Natural Science Foundation of China(No.62276204)Open Foundation of Science and Technology on Electronic Information Control Laboratory,Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios.
基金Supported by the Medical and Health Research Project of Zhejiang Province,No.2021KY1048 and 2022KY1142Ningbo Health Young Technical Backbone Talents Training Program,No.2020SWSQNGG-02the Key Science and Technology Project of Ningbo City,No.2021Z133.
文摘BACKGROUND Colorectal cancer(CRC)is a major global health burden.The current diagnostic tests have shortcomings of being invasive and low accuracy.AIM To explore the combination of intestinal microbiome composition and multi-target stool DNA(MT-sDNA)test in the diagnosis of CRC.METHODS We assessed the performance of the MT-sDNA test based on a hospital clinical trial.The intestinal microbiota was tested using 16S rRNA gene sequencing.This case-control study enrolled 54 CRC patients and 51 healthy controls.We identified biomarkers of bacterial structure,analyzed the relationship between different tumor markers and the relative abundance of related flora components,and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size,redundancy analysis,and random forest analysis.RESULTS MT-sDNA was associated with Bacteroides.MT-sDNA and carcinoembryonic antigen(CEA)were positively correlated with the existence of Parabacteroides,and alpha-fetoprotein(AFP)was positively associated with Faecalibacterium and Megamonas.In the random forest model,the existence of Streptococcus,Escherichia,Chitinophaga,Parasutterella,Lachnospira,and Romboutsia can distinguish CRC from health controls.The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%,with a sensitivity and specificity of 98.1%and 92.3%,respectively.CONCLUSION There is a positive correlation of MT-sDNA,CEA,and AFP with intestinal microbiome.Eight biomarkers including six genera of gut microbiota,MT-sDNA,and CEA showed a prominent sensitivity and specificity for CRC prediction,which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.
基金This paper was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK2004132).
文摘Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive processing method is presented and employed, and corresponding data association algorithms, i.e. a multi-objective ant-colony-based optimization algorithm and an easy fast assignment algorithm are developed to solve the measurements-to-measurements and measurements-to-tracks data association problems of bistatic sonar system, respectively. Monte-Carlo simulations are induced to evaluate the effectiveness of the proposed methods.
文摘Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.
基金Supported by the National Natural Science Foundation of China Youth Science Fund Project(Nos.62101405,61372185)
文摘This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.