In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e...In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.展开更多
This paper employs a multi-parameter multi-step chaos control method, which is built up on the OGY method, to stabilize desirable UPOs of a gear system with elastomeric web as a high-dimensional and non-hyperbolic cha...This paper employs a multi-parameter multi-step chaos control method, which is built up on the OGY method, to stabilize desirable UPOs of a gear system with elastomeric web as a high-dimensional and non-hyperbolic chaotic system, and the analyses are carried out. Three types of relations between components of a certain control parameter combination are defined in a certain control process. Special emphasis is put on the comparison of control efficiencies of the multi-parameter multi-step method and single-parameter multi-step method. The numerical experiments show the ability to switch between different orbits and the method can be a good chaos control alternative since it provides a more effective UPOs stabilization of high-dimensional and non-hyperbolic chaotic systems than the single-parameter chaos control, and according to the relation between components of each parameter combination, the best combination for chaos control in a certain UPO stabilization process are obtained.展开更多
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it f...In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.展开更多
We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalize...We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalized linear multi-step method G3^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(∑l=0^mγklZl). We also give a necessary condition for this kind of generalized linear multi-step methods to be conjugate-symplectic. We also demonstrate that these results can be easily extended to the case when G3^T is a more general operator.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m s...In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m step scheme defined on M while the old definitions are given out by defining a corresponding one step method on M × M ×…× M = Mm with a set of new variables. The new definition gives out a steptransition operator g: M → M. Under our new definition, the Leap-frog method is symplectic only for linear Hamiltonian systems. The transition operator g will be constructed via continued fractions and rational approximations.展开更多
In this paper, we solve a problem on the existence of conjugate symplecticity of linear multi-step methods (LMSM), the negative result is obtained. [ABSTRACT FROM AUTHOR]
Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained...Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained by the second author in a former paper). We prove that in the conjugate relation G3^λτ o G1^τ =G2^τ o G3^λτ with G1 being an LMSM,(1) theorder of G2 can not be higher than that of G1; (2) if G3 is also an LMSM and G2 is a symplectic B-series, then the orders of G1, G2 and G3 must be 2, 2 and 1 respectively.展开更多
We expand the step-transition operator of any linear multi-step method with order s≥ 2 up to O(Ts+5). And through examples we show how much the perturbation of the step-transition operator caused by the error of init...We expand the step-transition operator of any linear multi-step method with order s≥ 2 up to O(Ts+5). And through examples we show how much the perturbation of the step-transition operator caused by the error of initial value is.展开更多
In this study, a reliable algorithm to develop approximate solutions for the problem of fluid flow over a stretching or shrinking sheet is proposed. It is depicted that the differential transform method (DTM) solution...In this study, a reliable algorithm to develop approximate solutions for the problem of fluid flow over a stretching or shrinking sheet is proposed. It is depicted that the differential transform method (DTM) solutions are only valid for small values of the independent variable. The DTM solutions diverge for some differential equations that extremely have nonlinear behaviors or have boundary-conditions at infinity. For this reason the governing boundary-layer equations are solved by the Multi-step Differential Transform Method (MDTM). The main advantage of this method is that it can be applied directly to nonlinear differential equations without requiring linearization, discretization, or perturbation. It is a semi analytical-numerical technique that formulizes Taylor series in a very different manner. By applying the MDTM the interval of convergence for the series solution is increased. The MDTM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions for systems of differential equations. It is predicted that the MDTM can be applied to a wide range of engineering applications.展开更多
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho...This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics.展开更多
A content-aware multi-step prediction control(CAMPC)algorithm is proposed to determine the bitrate of 360-degree videos,aim⁃ing to enhance the quality of experience(QoE)of users and reduce the cost of video content pr...A content-aware multi-step prediction control(CAMPC)algorithm is proposed to determine the bitrate of 360-degree videos,aim⁃ing to enhance the quality of experience(QoE)of users and reduce the cost of video content providers(VCP).The CAMPC algorithm first em⁃ploys a neural network to generate the content richness and combines it with the current field of view(FOV)to accurately predict the probability distribution of tiles being viewed.Then,for the tiles in the predicted viewport which directly affect QoE,the CAMPC algorithm utilizes a multi-step prediction for future system states,and accordingly selects the bitrates of multiple subsequent steps,instead of an instantaneous state.Meanwhile,it controls the buffer occupancy to eliminate the impact of prediction errors.We implement CAMPC on players by building a 360-degree video streaming platform and evaluating other advanced adaptive bitrate(ABR)rules through the real network.Experimental results show that CAMPC can save 83.5%of bandwidth resources compared with the scheme that completely transmits the tiles outside the viewport with the Dynamic Adaptive Streaming over HTTP(DASH)protocol.Besides,the proposed method can improve the system utility by 62.7%and 27.6%compared with the DASH official and viewport-based rules,respectively.展开更多
In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the third- grade non-Newtonian fluid under the periodic body acce...In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the third- grade non-Newtonian fluid under the periodic body acceleration motion and the pulsatile pressure gradient. The hybrid multi-step differential transformation method (Hybrid-Ms- DTM) and the Crank-Nicholson method (CNM) are used to solve the partial differential equation (PDE), and a good agreement between them is observed in the results. The effects of the some physical parameters such as the amplitude, the lead angle, and the body acceleration frequency on the velocity and shear stress profiles are considered. The results show that increasing the amplitude, Ag, and reducing the lead angle of body acceleration, 9, make higher velocity profiles on the center line of both arteries. Also, the maximum wall shear stress increases when Ag increases.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MA019)the National Natural Science Foundation of China(11871312)。
文摘In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2009AA04Z404)
文摘This paper employs a multi-parameter multi-step chaos control method, which is built up on the OGY method, to stabilize desirable UPOs of a gear system with elastomeric web as a high-dimensional and non-hyperbolic chaotic system, and the analyses are carried out. Three types of relations between components of a certain control parameter combination are defined in a certain control process. Special emphasis is put on the comparison of control efficiencies of the multi-parameter multi-step method and single-parameter multi-step method. The numerical experiments show the ability to switch between different orbits and the method can be a good chaos control alternative since it provides a more effective UPOs stabilization of high-dimensional and non-hyperbolic chaotic systems than the single-parameter chaos control, and according to the relation between components of each parameter combination, the best combination for chaos control in a certain UPO stabilization process are obtained.
文摘In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.
基金Acknowledgements. We would like to thank the editors for their valuable suggestions and corrections. This research is supported by the National Natural Science Foundation of China (Grant Nos. 10471145 and 10672143), and by Morningside Center of Mathematics, Chinese Academy of Sciences.
文摘We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalized linear multi-step method G3^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(∑l=0^mγklZl). We also give a necessary condition for this kind of generalized linear multi-step methods to be conjugate-symplectic. We also demonstrate that these results can be easily extended to the case when G3^T is a more general operator.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
文摘In this paper, we propose a new definition of symplectic multistep methods. This definition differs from the old ones in that it is given via the one step method defined directly on M which is corresponding to the m step scheme defined on M while the old definitions are given out by defining a corresponding one step method on M × M ×…× M = Mm with a set of new variables. The new definition gives out a steptransition operator g: M → M. Under our new definition, the Leap-frog method is symplectic only for linear Hamiltonian systems. The transition operator g will be constructed via continued fractions and rational approximations.
基金China State Major Key Project for Basic ResearchesNational Natural Science Foundation of China! (No. 19801034)Bureau of
文摘In this paper, we solve a problem on the existence of conjugate symplecticity of linear multi-step methods (LMSM), the negative result is obtained. [ABSTRACT FROM AUTHOR]
基金This research is supported by the Informatization Construction of Knowledge Innovation Projects of the Chinese Academy of Sciences "Supercomputing Environment Construction and Application" (INF105-SCE), and by a grant (No. 10471145) from National Natural Science Foundation of China.
文摘Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained by the second author in a former paper). We prove that in the conjugate relation G3^λτ o G1^τ =G2^τ o G3^λτ with G1 being an LMSM,(1) theorder of G2 can not be higher than that of G1; (2) if G3 is also an LMSM and G2 is a symplectic B-series, then the orders of G1, G2 and G3 must be 2, 2 and 1 respectively.
基金Special Funds for Major State Basic Research Projects of China (No.G1999032801-10 and No. G1999032804), by the knowledge inn
文摘We expand the step-transition operator of any linear multi-step method with order s≥ 2 up to O(Ts+5). And through examples we show how much the perturbation of the step-transition operator caused by the error of initial value is.
文摘In this study, a reliable algorithm to develop approximate solutions for the problem of fluid flow over a stretching or shrinking sheet is proposed. It is depicted that the differential transform method (DTM) solutions are only valid for small values of the independent variable. The DTM solutions diverge for some differential equations that extremely have nonlinear behaviors or have boundary-conditions at infinity. For this reason the governing boundary-layer equations are solved by the Multi-step Differential Transform Method (MDTM). The main advantage of this method is that it can be applied directly to nonlinear differential equations without requiring linearization, discretization, or perturbation. It is a semi analytical-numerical technique that formulizes Taylor series in a very different manner. By applying the MDTM the interval of convergence for the series solution is increased. The MDTM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions for systems of differential equations. It is predicted that the MDTM can be applied to a wide range of engineering applications.
基金the National Natural Science Foundation of China(Grant Nos.71961022,11902163,12265020,and 12262024)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant Nos.2019BS01011 and 2022MS01003)+5 种基金2022 Inner Mongolia Autonomous Region Grassland Talents Project-Young Innovative and Entrepreneurial Talents(Mingjing Du)2022 Talent Development Foundation of Inner Mongolia Autonomous Region of China(Ming-Jing Du)the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region Program(Grant No.NJYT-20-B18)the Key Project of High-quality Economic Development Research Base of Yellow River Basin in 2022(Grant No.21HZD03)2022 Inner Mongolia Autonomous Region International Science and Technology Cooperation High-end Foreign Experts Introduction Project(Ge Kai)MOE(Ministry of Education in China)Humanities and Social Sciences Foundation(Grants No.20YJC860005).
文摘This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics.
基金supported in part by ZTE Corporation under Grant No.2021420118000065.
文摘A content-aware multi-step prediction control(CAMPC)algorithm is proposed to determine the bitrate of 360-degree videos,aim⁃ing to enhance the quality of experience(QoE)of users and reduce the cost of video content providers(VCP).The CAMPC algorithm first em⁃ploys a neural network to generate the content richness and combines it with the current field of view(FOV)to accurately predict the probability distribution of tiles being viewed.Then,for the tiles in the predicted viewport which directly affect QoE,the CAMPC algorithm utilizes a multi-step prediction for future system states,and accordingly selects the bitrates of multiple subsequent steps,instead of an instantaneous state.Meanwhile,it controls the buffer occupancy to eliminate the impact of prediction errors.We implement CAMPC on players by building a 360-degree video streaming platform and evaluating other advanced adaptive bitrate(ABR)rules through the real network.Experimental results show that CAMPC can save 83.5%of bandwidth resources compared with the scheme that completely transmits the tiles outside the viewport with the Dynamic Adaptive Streaming over HTTP(DASH)protocol.Besides,the proposed method can improve the system utility by 62.7%and 27.6%compared with the DASH official and viewport-based rules,respectively.
文摘In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the third- grade non-Newtonian fluid under the periodic body acceleration motion and the pulsatile pressure gradient. The hybrid multi-step differential transformation method (Hybrid-Ms- DTM) and the Crank-Nicholson method (CNM) are used to solve the partial differential equation (PDE), and a good agreement between them is observed in the results. The effects of the some physical parameters such as the amplitude, the lead angle, and the body acceleration frequency on the velocity and shear stress profiles are considered. The results show that increasing the amplitude, Ag, and reducing the lead angle of body acceleration, 9, make higher velocity profiles on the center line of both arteries. Also, the maximum wall shear stress increases when Ag increases.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.