期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Application of Unmanned Aerial Vehicle Remote Sensing on Dangerous Rock Mass Identification and Deformation Analysis:Case Study of a High-Steep Slope in an Open Pit Mine
1
作者 Wenjie Du Qian Sheng +5 位作者 Xiaodong Fu Jian Chen Jingyu Kang Xin Pang Daochun Wan Wei Yuan 《Journal of Earth Science》 2025年第2期750-763,共14页
Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric featur... Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes. 展开更多
关键词 high-steep slope UAV remote sensing dangerous rock identification multi-temporal monitoring multi-source data fusion engineering geology
原文传递
The Identification and Geological Significance of Fault Buried in the Gasikule Salt Lake in China based on the Multi-source Remote Sensing Data 被引量:2
2
作者 WANG Junhu ZHAO Yingjun +1 位作者 WU Ding LU Donghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期996-1007,共12页
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great... The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake. 展开更多
关键词 multi-source remote sensing data Gasikule Salt Lake Mangya depression China
在线阅读 下载PDF
Red Tide Information Extraction Based on Multi-source Remote Sensing Data in Haizhou Bay
3
作者 LU Xia JIAO Ming-lian 《Meteorological and Environmental Research》 CAS 2011年第8期78-81,共4页
[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR... [Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively. 展开更多
关键词 Haizhou Bay Red tide monitoring region multi-source remote sensing data Secondary filtering method Band ratio method Chlorophyll-a concentration method China
在线阅读 下载PDF
Deriving big geochemical data from high-resolution remote sensing data via machine learning:Application to a tailing storage facility in the Witwatersrand goldfields
4
作者 Steven E.Zhang Glen T.Nwaila +2 位作者 Julie E.Bourdeau Yousef Ghorbani Emmanuel John M.Carranza 《Artificial Intelligence in Geosciences》 2023年第1期9-21,共13页
Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,... Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,and some modern satellites,such as the Copernicus Programme’s Sentinel-2 remote sensing satellites,offer a spatial resolution of 10 m across many of their spectral bands.The abundance and quality of remote sensing data combined with accumulated primary geochemical data has provided an unprecedented opportunity to inferentially invert remote sensing data into geochemical data.The ability to derive geochemical data from remote sensing data would provide a form of secondary big geochemical data,which can be used for numerous downstream activities,particularly where data timeliness,volume and velocity are important.Major benefactors of secondary geochemical data would be environmental monitoring and applications of artificial intelligence and machine learning in geochemistry,which currently entirely relies on manually derived data that is primarily guided by scientific reduction.Furthermore,it permits the usage of well-established data analysis techniques from geochemistry to remote sensing that allows useable insights to be extracted beyond those typically associated with strictly remote sensing data analysis.Currently,no generally applicable and systematic method to derive chemical elemental concentrations from large-scale remote sensing data have been documented in geosciences.In this paper,we demonstrate that fusing geostatistically-augmented geochemical and remote sensing data produces an abundance of data that enables a more generalized machine learning-based geochemical data generation.We use gold grade data from a South African tailing storage facility(TSF)and data from both the Landsat-8 and Sentinel remote sensing satellites.We show that various machine learning algorithms can be used given the abundance of training data.Consequently,we are able to produce a high resolution(10 m grid size)gold concentration map of the TSF,which demonstrates the potential of our method to be used to guide extraction planning,online resource exploration,environmental monitoring and resource estimation. 展开更多
关键词 remote sensing Big geochemical data Machine learning Tailing storage facilities Witwatersrand Basin Dry labs
在线阅读 下载PDF
Big geochemical data through remote sensing for dynamic mineral resource monitoring in tailing storage facilities
5
作者 Steven E.Zhang Glen T.Nwaila +3 位作者 Shenelle Agard Julie E.Bourdeau Emmanuel John M.Carranza Yousef Ghorbani 《Artificial Intelligence in Geosciences》 2023年第1期137-149,共13页
Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rel... Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling. 展开更多
关键词 Big geochemical data Mine waste valorisation Tailings storage facilities Sentinel-2 remote sensing Machine learning
在线阅读 下载PDF
A new multi-source remote sensing image sample dataset with high resolution for flood area extraction:GF-FloodNet
6
作者 Yuwei Zhang Peng Liu +3 位作者 Lajiao Chen Mengzhen Xu Xingyan Guo Lingjun Zhao 《International Journal of Digital Earth》 SCIE EI 2023年第1期2522-2554,共33页
Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propo... Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o. 展开更多
关键词 Flood area extraction dataset construction multi-source remote sensing data deep learning
原文传递
Generation of daily snow depth from multi-source satellite images and in situ observations
7
作者 CAO Guangzhen HOU Peng +1 位作者 ZHENG Zhaojun TANG Shihao 《Journal of Geographical Sciences》 SCIE CSCD 2015年第10期1235-1246,共12页
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ... Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method. 展开更多
关键词 data fusion daily snow depth multi-source satellite images passive microwave remote sensing IMS in situ observations
原文传递
Monitoring vegetation dynamics in East Rennell Island World Heritage Site using multi-sensor and multi-temporal remote sensing data 被引量:3
8
作者 Mengmeng Wang Guojin He +5 位作者 Natarajan Ishwaran Tianhua Hong Andy Bell Zhaoming Zhang Guizhou Wang Meng Wang 《International Journal of Digital Earth》 SCIE 2020年第3期393-409,共17页
East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a Wo... East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a World Heritage in Danger in 2013.For East Rennell World Heritage Site(ERWHS)to‘shed’its‘Danger’status the management must monitor forest cover both within and outside of ERWHS.We used satellite data from multiple sources to track forest cover changes for the entire East Rennell island since 1998.95%of the island is still covered by undisturbed forests;annual average normalized difference vegetation index(NDVI)for the whole island was above 0.91 in 2015.However,vegetation cover in the island has been slowly decreasing,at a rate of–0.0011 NDVI per year between 2000 and 2015.This decrease less pronounced inside ERWHS compared to areas outside.While potential threats due to forest clearing outside ERWHS remain the forest cover change from 2000 to 2015 has been below 15%.We suggest ways in which the Government of Solomon Islands could use our data as well as unmanned air vehicles and field surveys to monitor forest cover change and ensure the future conservation of ERWHS. 展开更多
关键词 East Rennell World Heritage Site(ERWHS) vegetation cover forest cover dynamic monitoring multi-sources remote sensing data
原文传递
海量多源遥感影像数据服务系统设计与研究
9
作者 权西瑞 王凯 +1 位作者 王博 王小飞 《测绘与空间地理信息》 2025年第2期70-72,76,共4页
针对传统遥感影像数据共享分发过程中存在的问题,结合海量多源遥感影像存储管理特点及数据分发模式,分析了遥感影像数据应用需求和系统业务功能需求,基于影像快速检索技术和影像元数据自动建模技术,构建了海量多源遥感影像数据服务系统... 针对传统遥感影像数据共享分发过程中存在的问题,结合海量多源遥感影像存储管理特点及数据分发模式,分析了遥感影像数据应用需求和系统业务功能需求,基于影像快速检索技术和影像元数据自动建模技术,构建了海量多源遥感影像数据服务系统总体架构,提出了影像数据存储管理及数据分发的技术路线,设计了影像存储及查询展示、影像申请、影像审批、数据分发及统计分析等功能,实现了海量多源遥感影像全流程科学高效管理,提升了遥感影像数据的共享分发应用效率和精细化程度。 展开更多
关键词 遥感影像 海量数据 分布式存储 影像分发
在线阅读 下载PDF
基于遥感数据产品的亚热带地区土壤有机碳储量评估——以长株潭绿心区为例
10
作者 陈铸 肖海 +2 位作者 全思湘 殷梓强 徐思源 《安徽农业科学》 2025年第7期35-40,55,共7页
以长株潭绿心中央公园核心区为研究对象,基于实地采集的土壤样点有机碳数据、多光谱遥感数据、数字高程模型(DEM)、气象数据(降水和温度)、国土年度变更调查数据及其他辅助数据,选择多元线性回归模型、逐步回归模型和随机森林模型分别对... 以长株潭绿心中央公园核心区为研究对象,基于实地采集的土壤样点有机碳数据、多光谱遥感数据、数字高程模型(DEM)、气象数据(降水和温度)、国土年度变更调查数据及其他辅助数据,选择多元线性回归模型、逐步回归模型和随机森林模型分别对0~20 cm表层及剖面有机碳密度、有机碳储量进行反演和评估,比较不同模型方法的估算结果精度差异,分析各影响因子的重要性。结果表明:随机森林模型对0~20 cm表层土壤有机碳密度的反演精度最高(R^(2)=0.88),影响较大的因子为地表反射率蓝光波段、高程、水流强度指数、地形湿度指数和地形起伏度;逐步回归模型对剖面土壤有机碳密度的反演精度最高(R^(2)=0.54),影响较大的因子为高程、水流强度指数、地形起伏度、绿度指数、归一化植被指数、土壤调节植被指数和平均气温;0~20 cm表层土壤有机碳密度空间分布特征与地形起伏度空间分布十分吻合,地形地貌对表层土壤有机碳储量分布的影响较大;研究区不同土地利用方式0~20 cm表层土壤有机碳储量从大到小依次为林地>水田>园地>草地>旱地。 展开更多
关键词 遥感数据产品 土壤有机碳密度 土壤有机碳储量 亚热带地区
在线阅读 下载PDF
基于多源遥感数据的电化学储能电站火灾监测方法
11
作者 闫观捷 《自动化与仪器仪表》 2025年第2期98-101,共4页
电化学储能电站火灾存在监测难度大、响应速度慢以及潜在危害严重等问题,这些问题容易引发火灾初期的难以察觉、火势迅速蔓延以及人员伤亡和财产损失等严重后果,设计基于多源遥感数据的电化学储能电站火灾监测方法。选取两个时效性高的... 电化学储能电站火灾存在监测难度大、响应速度慢以及潜在危害严重等问题,这些问题容易引发火灾初期的难以察觉、火势迅速蔓延以及人员伤亡和财产损失等严重后果,设计基于多源遥感数据的电化学储能电站火灾监测方法。选取两个时效性高的遥感监测数据Himawari-8、FY-4A与两个稳定性好的遥感监测数据MODIS、NOAA-19作为数据来源,为提升遥感原始影像的分析精度,实施云检测,通过同一地区、不同时间但无云覆盖的遥感图像数据替换云层区域数据。应用时空自适应反射率融合模型实施四种遥感监测数据的时空融合,生成同时具有高稳定性与高时效性的遥感影像。利用绝对火点像元判定法实施融合后遥感影像的火点像元判定,实现电化学储能电站火灾监测。检测并排除太阳光反射导致的虚假火点。测试结果表明,设计方法的监测结果与实际情况十分贴近,监测较为准确,在长期运行下(6~18个月),设计方法的遗漏次数始终为零。 展开更多
关键词 多源遥感数据 时空融合 电化学储能电站 火灾监测 虚假火点排除
原文传递
水循环关键要素遥感反演研究进展 被引量:1
12
作者 崔要奎 《中国水利》 2024年第11期67-72,共6页
水循环是地球系统中至关重要的过程,对水资源管理、气候变化应对和生态环境保护有着深远的影响。遥感是大尺度监测水循环关键要素的主要手段,过去几十年已经取得诸多进展。梳理了当前蒸散发和降水等水循环关键通量要素及土壤水和水储量... 水循环是地球系统中至关重要的过程,对水资源管理、气候变化应对和生态环境保护有着深远的影响。遥感是大尺度监测水循环关键要素的主要手段,过去几十年已经取得诸多进展。梳理了当前蒸散发和降水等水循环关键通量要素及土壤水和水储量等水循环关键储量要素的遥感反演技术研究进展,指出了当前精细化监测的发展方向,提出技术创新方向以及亟待解决的科学问题,以期为提升水循环遥感学科发展和应用的深度与广度提供参考。 展开更多
关键词 水循环 通量要素 储量要素 遥感反演 数据 模型 应用 水量平衡
在线阅读 下载PDF
卫星高性能存储数传一体化系统关键技术及应用 被引量:2
13
作者 朱彦铭 刘文重 +2 位作者 吕雨桦 张俊杰 张倩武 《电子测量技术》 北大核心 2024年第24期93-102,共10页
随着我国遥感卫星技术的迅速发展,执行的空间任务日益复杂,传统星载存储与数传系统面临高度定制化和高昂移植成本的挑战。本研究旨在开发一种高性能存储数传一体化系统,以解决这些问题。基于现场可编程逻辑门阵列(FPGA)的高灵活性,该系... 随着我国遥感卫星技术的迅速发展,执行的空间任务日益复杂,传统星载存储与数传系统面临高度定制化和高昂移植成本的挑战。本研究旨在开发一种高性能存储数传一体化系统,以解决这些问题。基于现场可编程逻辑门阵列(FPGA)的高灵活性,该系统设计了SATA Ⅲ固态硬盘的读写访问及文件系统、带有数据合路控制的多通道DDR控制器和支持中频调制的数传功能。在设备和软件搭载数量最少的情况下,该系统实现了900 Mbit/s的最高数传下行带宽和最丰富的数传功能。该系统成功应用于吉天星某型号任务中,地面测试表明载荷存盘链路带宽长期稳定在2.8 Gbit/s以上,峰值带宽达到3.69 Gbit/s,存储和数传业务均实现长期零误码运行;在轨验证证实了载荷图像下传清晰完整。该系统充分满足遥感卫星对稳定性和可靠性的严格要求,在遥感卫星领域具有重要的应用价值。 展开更多
关键词 遥感卫星 星载系统 FPGA 存储数传一体化
原文传递
卫星应用共享平台的关键技术与建设
14
作者 李佳颖 孙晓玮 +1 位作者 赵海鹏 李庆君 《测绘与空间地理信息》 2024年第9期109-111,共3页
遥感卫星领域的进步革新带来了丰富的影像数据资源,使得海量遥感影像在数据存储管理、共享传输和应用服务等方面存在一定挑战。对此,本文采用分布式数据库进行影像数据存储,研究影像切片数据生产、管理、服务一体化关键技术,实现影像自... 遥感卫星领域的进步革新带来了丰富的影像数据资源,使得海量遥感影像在数据存储管理、共享传输和应用服务等方面存在一定挑战。对此,本文采用分布式数据库进行影像数据存储,研究影像切片数据生产、管理、服务一体化关键技术,实现影像自动化切片入库,通过数据可视化表达、权限控制进行服务支持,搭建卫星应用共享平台,实现海量遥感影像数据的数据分发、数据服务及业务应用。 展开更多
关键词 遥感数据 分发服务 分布式存储 影像切片
在线阅读 下载PDF
智慧保护地管理云平台系统设计与研究
15
作者 谷洁 唐浩文 +1 位作者 宋宏伟 刘楠 《电气自动化》 2024年第3期83-86,共4页
针对保护地数据收集较为困难、管理云平台的利用普遍低下等问题,对智慧保护地管理云平台系统进行设计与研究。采用分布式系统对智慧保护地管理云平台进行设计,其结构可分为感知层、网络层和应用层。感知层主要采用无人机遥感技术实现对... 针对保护地数据收集较为困难、管理云平台的利用普遍低下等问题,对智慧保护地管理云平台系统进行设计与研究。采用分布式系统对智慧保护地管理云平台进行设计,其结构可分为感知层、网络层和应用层。感知层主要采用无人机遥感技术实现对保护地数据的采集;网络层在窄带物联网技术上增加一个定时节能模块,可在对采集到的信息传送时节省功耗;应用层主要是对数据存储进行设计,可避免产生冗余重复数据,节省数据空间,增强索引能力和响应速度。通过试验,验证了数据采集的完整度和帧图像分辨率的稳定性都较传统方法更为优越。管理云平台数据存储占用空间较传统方法少,且随着数据量的增加,增长幅度更为均匀。 展开更多
关键词 智慧保护地 管理云平台系统 无人机遥感技术 窄带物联网 数据存储 空间占用
在线阅读 下载PDF
多维遥感数据时空谱一体化存储结构设计 被引量:17
16
作者 张立福 陈浩 +2 位作者 孙雪剑 付东杰 童庆禧 《遥感学报》 EI CSCD 北大核心 2017年第1期62-73,共12页
卫星遥感技术为我们研究全球变化提供了时间、空间、光谱多维度的海量遥感大数据,目前还没有一种针对遥感数据的多维度的特性设计的一体化存储结构。本文提出了一种多维遥感数据的组织方式,设计了SPAtial-Temporal-Spectral(SPATS)时空... 卫星遥感技术为我们研究全球变化提供了时间、空间、光谱多维度的海量遥感大数据,目前还没有一种针对遥感数据的多维度的特性设计的一体化存储结构。本文提出了一种多维遥感数据的组织方式,设计了SPAtial-Temporal-Spectral(SPATS)时空谱多维遥感数据一体化存储结构,定义了5种多维数据存储格式:Temporal Sequential in Band(TSB)、Temporal Sequential in Pixel(TSP)、Temporal Interleaved by Band(TIB)、Temporal Interleaved by Pixel(TIP)和Temporal Interleaved by Spectrum(TIS),设计了Multi-dimensional Data Analysis(MDA)多维数据分析模块,实现了长时间序列遥感影像的时空谱多维一体化存储,并能够进行不同维度的数据分析与显示,构建了基于不同光谱指数的时间谱影像立方体,为时空谱多维遥感数据的综合与表征提供数据组织解决方案。 展开更多
关键词 遥感技术 一体化存储 多维数据结构 SPATS MDA
原文传递
海量遥感数据分布式集群化存储技术研究 被引量:18
17
作者 季艳 鲁克文 张英慧 《计算机科学与探索》 CSCD 北大核心 2017年第9期1398-1404,共7页
针对当前高分辨率遥感数据的高效存储与高速访问迫切需求,采用分布式架构、对象存储和集群技术,结合遥感数据的空间特性,构建了基于数据对象的存储组织模型,设计了全分布式的存储管理架构;形成了逻辑上全球覆盖,物理上分散存储,全球遥... 针对当前高分辨率遥感数据的高效存储与高速访问迫切需求,采用分布式架构、对象存储和集群技术,结合遥感数据的空间特性,构建了基于数据对象的存储组织模型,设计了全分布式的存储管理架构;形成了逻辑上全球覆盖,物理上分散存储,全球遥感数据存储视图一体化,数据高效共享的分布式集群化遥感大数据存储体系。通过使用此架构,可实现遥感数据资源配置的灵活化,业务区域化特征的定制化与个性化,以及管理系统的智能化。 展开更多
关键词 遥感数据 高性能存储 分布式集群化 对象存储
在线阅读 下载PDF
基于GeoRaster的多源遥感数据存储研究 被引量:12
18
作者 李芳 邬群勇 汪小钦 《测绘科学》 CSCD 北大核心 2009年第3期150-151,96,共3页
遥感数据源极大丰富,影像文件格式多样,组织方式也较复杂,如何采用统一的接口实现异构多源海量遥感数据的存储是一大难题。本文以多源遥感数据的存储为研究对象,在研究Oracle GeoRaster数据模型的基础上,设计了扩展的基于GeoRaster的多... 遥感数据源极大丰富,影像文件格式多样,组织方式也较复杂,如何采用统一的接口实现异构多源海量遥感数据的存储是一大难题。本文以多源遥感数据的存储为研究对象,在研究Oracle GeoRaster数据模型的基础上,设计了扩展的基于GeoRaster的多源遥感影像存储模型,利用java JAI与GDAL相结合,实现了多源多格式遥感影像数据的统一存储。 展开更多
关键词 GEORASTER GDAL 多源遥感数据存储
原文传递
大数据架构的遥感资源存储管理方法 被引量:12
19
作者 胡晓东 张新 屈靖生 《地球信息科学学报》 CSCD 北大核心 2016年第5期681-689,共9页
随着遥感数据获取能力的日益增强,一方面导致遥感数据的多元化和海量化,使"存不起"的问题日益突出,另一方面由于缺少有效和高效的存储管理方法,难以及时发现终端应用所需的数据,使结果"存而无用"。本文围绕巨量、... 随着遥感数据获取能力的日益增强,一方面导致遥感数据的多元化和海量化,使"存不起"的问题日益突出,另一方面由于缺少有效和高效的存储管理方法,难以及时发现终端应用所需的数据,使结果"存而无用"。本文围绕巨量、高吞吐、空间结构化的遥感影像数据及其基础土地信息产品的存储与管理问题,提出采用大数据架构的遥感资源存储管理方法,并基于MongoDB数据库实现了原型系统;通过使用PB量级数据进行试验,证明了该方法满足大数据时代对遥感矢栅数据的存储管理需求。 展开更多
关键词 遥感数据管理 遥感大数据 存储架构 数据组织方式 MONGODB
原文传递
云计算环境下新疆遥感应用数据中心的挑战与机遇 被引量:14
20
作者 钱育蓉 于炯 +3 位作者 英昌甜 杨兴耀 鲁亮 卞琛 《软件》 2015年第4期58-61,共4页
遥感数据量的飞速增长和数据中心的高能耗逐渐暴露出现有云计算框架(GFS、HDFS等)在设计时缺少对能耗因素的考虑,使得负载很低时系统中所有计算节点仍需保持活动状态来维持系统可用性与可靠性。为此本文从新疆云计算数据中心的设计着手... 遥感数据量的飞速增长和数据中心的高能耗逐渐暴露出现有云计算框架(GFS、HDFS等)在设计时缺少对能耗因素的考虑,使得负载很低时系统中所有计算节点仍需保持活动状态来维持系统可用性与可靠性。为此本文从新疆云计算数据中心的设计着手,结合异构遥感大数据的数据特征(时空、光谱、分辨率等)和应用特点(浏览,显示,存取等),提出了云计算环境下遥感大数据存储和管理的建议:1.在分布式文件系统中采用节点休眠技术的数据组织和副本策略;2.通过自适应的虚拟机动态迁移技术实现空闲节点休眠。利用软节能技术改进虚拟化云计算平台应用数据层对节能计算的适应能力,以实现云环境下遥感大数据的节能、高效、透明存储和管理。 展开更多
关键词 云存储 节能计算 遥感大数据 虚拟机迁移 副本策略
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部