Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric featur...Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.展开更多
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great...The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.展开更多
[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR...[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.展开更多
Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,...Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,and some modern satellites,such as the Copernicus Programme’s Sentinel-2 remote sensing satellites,offer a spatial resolution of 10 m across many of their spectral bands.The abundance and quality of remote sensing data combined with accumulated primary geochemical data has provided an unprecedented opportunity to inferentially invert remote sensing data into geochemical data.The ability to derive geochemical data from remote sensing data would provide a form of secondary big geochemical data,which can be used for numerous downstream activities,particularly where data timeliness,volume and velocity are important.Major benefactors of secondary geochemical data would be environmental monitoring and applications of artificial intelligence and machine learning in geochemistry,which currently entirely relies on manually derived data that is primarily guided by scientific reduction.Furthermore,it permits the usage of well-established data analysis techniques from geochemistry to remote sensing that allows useable insights to be extracted beyond those typically associated with strictly remote sensing data analysis.Currently,no generally applicable and systematic method to derive chemical elemental concentrations from large-scale remote sensing data have been documented in geosciences.In this paper,we demonstrate that fusing geostatistically-augmented geochemical and remote sensing data produces an abundance of data that enables a more generalized machine learning-based geochemical data generation.We use gold grade data from a South African tailing storage facility(TSF)and data from both the Landsat-8 and Sentinel remote sensing satellites.We show that various machine learning algorithms can be used given the abundance of training data.Consequently,we are able to produce a high resolution(10 m grid size)gold concentration map of the TSF,which demonstrates the potential of our method to be used to guide extraction planning,online resource exploration,environmental monitoring and resource estimation.展开更多
Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rel...Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.展开更多
Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propo...Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o.展开更多
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ...Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.展开更多
East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a Wo...East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a World Heritage in Danger in 2013.For East Rennell World Heritage Site(ERWHS)to‘shed’its‘Danger’status the management must monitor forest cover both within and outside of ERWHS.We used satellite data from multiple sources to track forest cover changes for the entire East Rennell island since 1998.95%of the island is still covered by undisturbed forests;annual average normalized difference vegetation index(NDVI)for the whole island was above 0.91 in 2015.However,vegetation cover in the island has been slowly decreasing,at a rate of–0.0011 NDVI per year between 2000 and 2015.This decrease less pronounced inside ERWHS compared to areas outside.While potential threats due to forest clearing outside ERWHS remain the forest cover change from 2000 to 2015 has been below 15%.We suggest ways in which the Government of Solomon Islands could use our data as well as unmanned air vehicles and field surveys to monitor forest cover change and ensure the future conservation of ERWHS.展开更多
卫星遥感技术为我们研究全球变化提供了时间、空间、光谱多维度的海量遥感大数据,目前还没有一种针对遥感数据的多维度的特性设计的一体化存储结构。本文提出了一种多维遥感数据的组织方式,设计了SPAtial-Temporal-Spectral(SPATS)时空...卫星遥感技术为我们研究全球变化提供了时间、空间、光谱多维度的海量遥感大数据,目前还没有一种针对遥感数据的多维度的特性设计的一体化存储结构。本文提出了一种多维遥感数据的组织方式,设计了SPAtial-Temporal-Spectral(SPATS)时空谱多维遥感数据一体化存储结构,定义了5种多维数据存储格式:Temporal Sequential in Band(TSB)、Temporal Sequential in Pixel(TSP)、Temporal Interleaved by Band(TIB)、Temporal Interleaved by Pixel(TIP)和Temporal Interleaved by Spectrum(TIS),设计了Multi-dimensional Data Analysis(MDA)多维数据分析模块,实现了长时间序列遥感影像的时空谱多维一体化存储,并能够进行不同维度的数据分析与显示,构建了基于不同光谱指数的时间谱影像立方体,为时空谱多维遥感数据的综合与表征提供数据组织解决方案。展开更多
基金financially supported by the Youth Innovation Promotion Association CAS(No.2021325)the National Natural Science Foundation of China(Nos.52179117,U21A20159)the Research project of Panzhihua Iron and Steel Group Mining Co.,Ltd.(No.2021-P6-D2-05)。
文摘Source identification and deformation analysis of disaster bodies are the main contents of high-steep slope risk assessment,the establishment of high-precision model and the quantification of the fine geometric features of the slope are the prerequisites for the above work.In this study,based on the UAV remote sensing technology in acquiring refined model and quantitative parameters,a semi-automatic dangerous rock identification method based on multi-source data is proposed.In terms of the periodicity UAV-based deformation monitoring,the monitoring accuracy is defined according to the relative accuracy of multi-temporal point cloud.Taking a high-steep slope as research object,the UAV equipped with special sensors was used to obtain multi-source and multitemporal data,including high-precision DOM and multi-temporal 3D point clouds.The geometric features of the outcrop were extracted and superimposed with DOM images to carry out semi-automatic identification of dangerous rock mass,realizes the closed-loop of identification and accuracy verification;changing detection of multi-temporal 3D point clouds was conducted to capture deformation of slope with centimeter accuracy.The results show that the multi-source data-based semiautomatic dangerous rock identification method can complement each other to improve the efficiency and accuracy of identification,and the UAV-based multi-temporal monitoring can reveal the near real-time deformation state of slopes.
基金This work was supported by the National Advance Research Program(Item No.Y1601-1).
文摘The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake.
基金Supported by Science and Technology Project of Lianyungang City(SH0917)
文摘[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively.
基金provided by the Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121,973)DSI-NRF CIMERA.Yousef Ghorbani acknowledges financial support from the Centre for Advanced Mining and Metallurgy(CAMM),a strategic research environment established at the LuleåUniversity of Technology funded by the Swedish governmentWe also thank Sibanye-Stillwater Ltd.For their funding through the Wits Mining Institute(WMI).
文摘Remote sensing data is a cheap form of surficial geoscientific data,and in terms of veracity,velocity and volume,can sometimes be considered big data.Its spatial and spectral resolution continues to improve over time,and some modern satellites,such as the Copernicus Programme’s Sentinel-2 remote sensing satellites,offer a spatial resolution of 10 m across many of their spectral bands.The abundance and quality of remote sensing data combined with accumulated primary geochemical data has provided an unprecedented opportunity to inferentially invert remote sensing data into geochemical data.The ability to derive geochemical data from remote sensing data would provide a form of secondary big geochemical data,which can be used for numerous downstream activities,particularly where data timeliness,volume and velocity are important.Major benefactors of secondary geochemical data would be environmental monitoring and applications of artificial intelligence and machine learning in geochemistry,which currently entirely relies on manually derived data that is primarily guided by scientific reduction.Furthermore,it permits the usage of well-established data analysis techniques from geochemistry to remote sensing that allows useable insights to be extracted beyond those typically associated with strictly remote sensing data analysis.Currently,no generally applicable and systematic method to derive chemical elemental concentrations from large-scale remote sensing data have been documented in geosciences.In this paper,we demonstrate that fusing geostatistically-augmented geochemical and remote sensing data produces an abundance of data that enables a more generalized machine learning-based geochemical data generation.We use gold grade data from a South African tailing storage facility(TSF)and data from both the Landsat-8 and Sentinel remote sensing satellites.We show that various machine learning algorithms can be used given the abundance of training data.Consequently,we are able to produce a high resolution(10 m grid size)gold concentration map of the TSF,which demonstrates the potential of our method to be used to guide extraction planning,online resource exploration,environmental monitoring and resource estimation.
基金supported by a Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.
基金supported by the National Natural Science Foundation of China under Grant number U2243222,42071413,and 41971397.
文摘Deep learning algorithms show good prospects for remote sensingflood monitoring.They mostly rely on huge amounts of labeled data.However,there is a lack of available labeled data in actual needs.In this paper,we propose a high-resolution multi-source remote sensing dataset forflood area extraction:GF-FloodNet.GF-FloodNet contains 13388 samples from Gaofen-3(GF-3)and Gaofen-2(GF-2)images.We use a multi-level sample selection and interactive annotation strategy based on active learning to construct it.Compare with otherflood-related datasets,GF-FloodNet not only has a spatial resolution of up to 1.5 m and provides pixel-level labels,but also consists of multi-source remote sensing data.We thoroughly validate and evaluate the dataset using several deep learning models,including quantitative analysis,qualitative analysis,and validation on large-scale remote sensing data in real scenes.Experimental results reveal that GF-FloodNet has significant advantages by multi-source data.It can support different deep learning models for training to extractflood areas.There should be a potential optimal boundary for model training in any deep learning dataset.The boundary seems close to 4824 samples in GF-FloodNet.We provide GF-FloodNet at https://www.kaggle.com/datasets/pengliuair/gf-floodnet and https://pan.baidu.com/s/1vdUCGNAfFwG5UjZ9RLLFMQ?pwd=8v6o.
基金Meteorological Research in the Public Interest,No.GYHY201106014Beijing Nova Program,No.2010B037China Special Fund for the National High Technology Research and Development Program of China(863 Program),No.412230
文摘Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.
基金supported by the National Key Research and Development Programs of China(Grant No.2016YFA0600302 and 2016YFB0501502)the Hainan Provincial key technology research and demonstration programs of farmland improvement(HNGDhs2015)+1 种基金the programs of the National Natural Science Foundation of China(Grant No.61801443 and 61401461)the Hainan Provincial Department of Science and Technology under the Grant No.ZDKJ2016021 and ZDKJ2016015-1.
文摘East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List.Potential threats due to logging,mining and agriculture led to the site being declared a World Heritage in Danger in 2013.For East Rennell World Heritage Site(ERWHS)to‘shed’its‘Danger’status the management must monitor forest cover both within and outside of ERWHS.We used satellite data from multiple sources to track forest cover changes for the entire East Rennell island since 1998.95%of the island is still covered by undisturbed forests;annual average normalized difference vegetation index(NDVI)for the whole island was above 0.91 in 2015.However,vegetation cover in the island has been slowly decreasing,at a rate of–0.0011 NDVI per year between 2000 and 2015.This decrease less pronounced inside ERWHS compared to areas outside.While potential threats due to forest clearing outside ERWHS remain the forest cover change from 2000 to 2015 has been below 15%.We suggest ways in which the Government of Solomon Islands could use our data as well as unmanned air vehicles and field surveys to monitor forest cover change and ensure the future conservation of ERWHS.
文摘卫星遥感技术为我们研究全球变化提供了时间、空间、光谱多维度的海量遥感大数据,目前还没有一种针对遥感数据的多维度的特性设计的一体化存储结构。本文提出了一种多维遥感数据的组织方式,设计了SPAtial-Temporal-Spectral(SPATS)时空谱多维遥感数据一体化存储结构,定义了5种多维数据存储格式:Temporal Sequential in Band(TSB)、Temporal Sequential in Pixel(TSP)、Temporal Interleaved by Band(TIB)、Temporal Interleaved by Pixel(TIP)和Temporal Interleaved by Spectrum(TIS),设计了Multi-dimensional Data Analysis(MDA)多维数据分析模块,实现了长时间序列遥感影像的时空谱多维一体化存储,并能够进行不同维度的数据分析与显示,构建了基于不同光谱指数的时间谱影像立方体,为时空谱多维遥感数据的综合与表征提供数据组织解决方案。