期刊文献+
共找到1,445篇文章
< 1 2 73 >
每页显示 20 50 100
Automatic Digital Inclinometer Calibration System Based on Image Recognition
1
作者 FENG Zheming CHEN Gang +1 位作者 NAN Zhuojiang TAO Wei 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期280-290,共11页
Traditional calibration method for the digital inclinometer relies on manual inspection,and results in its disadvantages of complicated process,low-efficiency and human errors easy to be introduced.To improve both the... Traditional calibration method for the digital inclinometer relies on manual inspection,and results in its disadvantages of complicated process,low-efficiency and human errors easy to be introduced.To improve both the calibration accuracy and efficiency of digital inclinometer,an automatic digital inclinometer calibration system was developed in this study,and a new display tube recognition algorithm was proposed.First,a high-precision automatic turntable was taken as the reference to calculate the indication error of the inclinometer.Then,the automatic inclinometer calibration control process and the digital inclinometer zero-setting function were formulated.For display tube recognition,a new display tube recognition algorithm combining threading method and feature extraction method was proposed.Finally,the calibration system was calibrated by photoelectric autocollimator and regular polygon mirror,and the calibration system error and repeatability were calculated via a series of experiments.The experimental results showed that the indication error of the proposed calibration system was less than 4",and the repeatability was 3.9".A digital inclinometer with the resolution of 0.1°was taken as a testing example,within the calibration points'range of[-90°,90°],the repeatability of the testing was 0.085°,and the whole testing process was less than 90 s.The digital inclinometer indication error is mainly introduced by the digital inclinometer resolution according to the uncertainty evaluation. 展开更多
关键词 digital inclinometer automatic calibration high-precision turntable number recognition
原文传递
The Influence of Digital Literacy on College Students’Entrepreneurial Opportunity Recognition:The Moderating Role of Innovation and Entrepreneurship Education
2
作者 Fanjing Lu Zenghui Lu +1 位作者 Mingkai Luo Cheng Wei 《Journal of Contemporary Educational Research》 2025年第6期243-249,共7页
To explore the impact of digital literacy on college students’entrepreneurial opportunity recognition,this study conducted a questionnaire survey using the Digital Literacy Scale,the Entrepreneurial Opportunity Recog... To explore the impact of digital literacy on college students’entrepreneurial opportunity recognition,this study conducted a questionnaire survey using the Digital Literacy Scale,the Entrepreneurial Opportunity Recognition Scale,and the Innovation and Entrepreneurship Education Scale.A total of 542 valid responses were collected.The results revealed a significant positive correlation between digital literacy and entrepreneurial opportunity recognition among college students(β=0.856,P<0.01).Further analysis indicated that innovation and entrepreneurship education plays a positive moderating role in this relationship(β=0.111,P<0.01).In other words,the higher the students’scores in innovation and entrepreneurship education,the stronger the relationship between digital literacy and their ability to recognize entrepreneurial opportunities. 展开更多
关键词 digital literacy College students Entrepreneurial opportunity recognition Innovation and entrepreneurship education Talent cultivation Innovation awareness
在线阅读 下载PDF
Incomplete Physical Adversarial Attack on Face Recognition
3
作者 HU Weitao XU Wujun 《Journal of Donghua University(English Edition)》 2025年第4期442-448,共7页
In recent work,adversarial stickers are widely used to attack face recognition(FR)systems in the physical world.However,it is difficult to evaluate the performance of physical attacks because of the lack of volunteers... In recent work,adversarial stickers are widely used to attack face recognition(FR)systems in the physical world.However,it is difficult to evaluate the performance of physical attacks because of the lack of volunteers in the experiment.In this paper,a simple attack method called incomplete physical adversarial attack(IPAA)is proposed to simulate physical attacks.Different from the process of physical attacks,when an IPAA is conducted,a photo of the adversarial sticker is embedded into a facial image as the input to attack FR systems,which can obtain results similar to those of physical attacks without inviting any volunteers.The results show that IPAA has a higher similarity with physical attacks than digital attacks,indicating that IPAA is able to evaluate the performance of physical attacks.IPAA is effective in quantitatively measuring the impact of the sticker location on the results of attacks. 展开更多
关键词 physical attack digital attack face recognition interferential variable adversarial example
在线阅读 下载PDF
Fusion method for water depth data from multiple sources based on image recognition
4
作者 Huiyu HAN Feng ZHOU 《Journal of Oceanology and Limnology》 2025年第4期1093-1105,共13页
Considering the difficulty of integrating the depth points of nautical charts of the East China Sea into a global high-precision Grid Digital Elevation Model(Grid-DEM),we proposed a“Fusion based on Image Recognition(... Considering the difficulty of integrating the depth points of nautical charts of the East China Sea into a global high-precision Grid Digital Elevation Model(Grid-DEM),we proposed a“Fusion based on Image Recognition(FIR)”method for multi-sourced depth data fusion,and used it to merge the electronic nautical chart dataset(referred to as Chart2014 in this paper)with the global digital elevation dataset(referred to as Globalbath2002 in this paper).Compared to the traditional fusion of two datasets by direct combination and interpolation,the new Grid-DEM formed by FIR can better represent the data characteristics of Chart2014,reduce the calculation difficulty,and be more intuitive,and,the choice of different interpolation methods in FIR and the influence of the“exclusion radius R”parameter were discussed.FIR avoids complex calculations of spatial distances among points from different sources,and instead uses spatial exclusion map to perform one-step screening based on the exclusion radius R,which greatly improved the fusion status of a reliable dataset.The fusion results of different experiments were analyzed statistically with root mean square error and mean relative error,showing that the interpolation methods based on Delaunay triangulation are more suitable for the fusion of nautical chart depth of China,and factors such as the point density distribution of multiple source data,accuracy,interpolation method,and various terrain conditions should be fully considered when selecting the exclusion radius R. 展开更多
关键词 water depth fusion method Grid digital Elevation Model(Grid-DEM) image recognition Delaunay triangulation
在线阅读 下载PDF
Multimodal fusion recognition for digital twin
5
作者 Tianzhe Zhou Xuguang Zhang +1 位作者 Bing Kang Mingkai Chen 《Digital Communications and Networks》 SCIE CSCD 2024年第2期337-346,共10页
The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to real... The digital twin is the concept of transcending reality,which is the reverse feedback from the real physical space to the virtual digital space.People hold great prospects for this emerging technology.In order to realize the upgrading of the digital twin industrial chain,it is urgent to introduce more modalities,such as vision,haptics,hearing and smell,into the virtual digital space,which assists physical entities and virtual objects in creating a closer connection.Therefore,perceptual understanding and object recognition have become an urgent hot topic in the digital twin.Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality,ignoring the complementarity between multiple modalities.In order to overcome this dilemma,we propose a multimodal fusion network in our article that combines two modalities,visual and haptic,for surface material recognition.On the one hand,the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping.On the other hand,the network is extensible and can be used as a universal architecture to include more modalities.Experiments show that the constructed multimodal fusion network can achieve 99.42%classification accuracy while reducing complexity. 展开更多
关键词 digital twin Multimodal fusion Object recognition Deep learning Transfer learning
在线阅读 下载PDF
Investigation on Analog and Digital Modulations Recognition Using Machine Learning Algorithms
6
作者 Jean Ndoumbe Ivan Basile Kabeina +1 位作者 Gaelle Patricia Talotsing Soubiel-Noël Nkomo Biloo 《World Journal of Engineering and Technology》 2024年第4期867-884,共18页
In the field of radiocommunication, modulation type identification is one of the most important characteristics in signal processing. This study aims to implement a modulation recognition system on two approaches to m... In the field of radiocommunication, modulation type identification is one of the most important characteristics in signal processing. This study aims to implement a modulation recognition system on two approaches to machine learning techniques, the K-Nearest Neighbors (KNN) and Artificial Neural Networks (ANN). From a statistical and spectral analysis of signals, nine key differentiation features are extracted and used as input vectors for each trained model. The feature extraction is performed by using the Hilbert transform, the forward and inverse Fourier transforms. The experiments with the AMC Master dataset classify ten (10) types of analog and digital modulations. AM_DSB_FC, AM_DSB_SC, AM_USB, AM_LSB, FM, MPSK, 2PSK, MASK, 2ASK, MQAM are put forward in this article. For the simulation of the chosen model, signals are polluted by the Additive White Gaussian Noise (AWGN). The simulation results show that the best identification rate is the MLP neuronal method with 90.5% of accuracy after 10 dB signal-to-noise ratio value, with a shift of more than 15% from the k-nearest neighbors’ algorithm. 展开更多
关键词 Automatic recognition Artificial Neural Networks K-Nearest Neighbors Machine Learning Analog Modulations digital Modulations
在线阅读 下载PDF
Application of VQ-HMM to Chinese Spoken Digit Recognition 被引量:1
7
作者 赵力 刘怡龙 +1 位作者 邹采荣 吴镇扬 《Journal of Southeast University(English Edition)》 EI CAS 2000年第1期20-23,共4页
In this paper, a new speech recognition method was proposed, which integrated a VQ distortion measure and a discrete HMM. The VQ HMM uses a VQ distortion measure at each state instead of a discrete output probabili... In this paper, a new speech recognition method was proposed, which integrated a VQ distortion measure and a discrete HMM. The VQ HMM uses a VQ distortion measure at each state instead of a discrete output probability used by a discrete HMM. The VQ HMM is described, and its speech recognition performance is compared with the conventional HMMs through the experiments on speaker independent Chinese spoken digit recognition. The comparisons confirm that the new method over performed traditional HMMs. 展开更多
关键词 HMM VQ Chinese spoken digit recognition
在线阅读 下载PDF
RECOGNITION OF SPOKEN CHINESE DIGIT BASED ON INTEGRATION OF VQ AND HMM
8
作者 杨建华 赵力 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第1期107-111,共5页
A new speech recognition method is proposed, that integrates a VQ distortion measure and a discrete HMM. This VQ distortion based HMM uses a VQ distortion measure at each state instead of a discrete probability out... A new speech recognition method is proposed, that integrates a VQ distortion measure and a discrete HMM. This VQ distortion based HMM uses a VQ distortion measure at each state instead of a discrete probability output used by a discrete HMM. Although this method is regarded as a refined version of the VQ distortion based recognition method proposed by Burton et al, it is also considered as a special case of a mixed distribution density HMM. In this paper, the VQ distortion based HMM is described, and it is compared with the conventional HMMs and their speech recognition performance through the experiments on speaker independent spoken digit recognition. From these comparisons, we confirm that the new method is better than the traditional HMMs. 展开更多
关键词 HMM VQ distortion spoken digit recognition
在线阅读 下载PDF
Belief exponential divergence for D-S evidence theory and its application in multi-source information fusion 被引量:2
9
作者 DUAN Xiaobo FAN Qiucen +1 位作者 BI Wenhao ZHANG An 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1454-1468,共15页
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss... Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences. 展开更多
关键词 Dempster-Shafer(D-S)evidence theory multi-source information fusion conflict measurement belief expo-nential divergence(BED) target recognition
在线阅读 下载PDF
Handwritten digit recognition based on ghost imaging with deep learning 被引量:3
10
作者 Xing He Sheng-Mei Zhao Le Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期367-372,共6页
We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cos... We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the classification.The results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is enhanced.Compared with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality property.The proposed scheme provides a promising way for remote sensing. 展开更多
关键词 ghost imaging handwritten digit recognition ghost handwritten recognition deep learning
原文传递
Neural Network-Powered License Plate Recognition System Design
11
作者 Sakib Hasan Md Nagib Mahfuz Sunny +1 位作者 Abdullah Al Nahian Mohammad Yasin 《Engineering(科研)》 2024年第9期284-300,共17页
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ... The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations. 展开更多
关键词 Intelligent Traffic Control Systems Automatic License Plate recognition (ALPR) Neural Networks Vehicle Surveillance Traffic Management License Plate recognition Algorithms Image Extraction Character Segmentation Character recognition Low-Light Environments Inclement Weather Empirical Findings Algorithm Accuracy Simulation Outcomes digitALIZATION
在线阅读 下载PDF
Multi-source data-based 3D digital preservation of large scale ancient chinese architecture:A case report 被引量:2
12
作者 Xiang GAO Hainan CUI +2 位作者 Lingjie ZHU Tianxin SHI Shuhan SHEN 《Virtual Reality & Intelligent Hardware》 2019年第5期525-541,共17页
The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is be... The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities. 展开更多
关键词 Ancient Chinese architecture 3D digital preservation multi-source data acquisition Architectural scene modeling
在线阅读 下载PDF
Performance Analysis of Spoken Arabic Digits Recognition Techniques
13
作者 Ali Ganoun Ibrahim Almerhag 《Journal of Electronic Science and Technology》 CAS 2012年第2期153-157,共5页
A performance evaluation of sound recognition techniques in recognizing some spoken Arabic words, namely digits from zero to nine, is proposed. One of the main characteristics of aU Arabic digits is polysyllabic words... A performance evaluation of sound recognition techniques in recognizing some spoken Arabic words, namely digits from zero to nine, is proposed. One of the main characteristics of aU Arabic digits is polysyllabic words except for zero. The performance analysis is based on different features of phonetic isolated Arabic digits. The main aim of this paper is to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on three recognition features: the Yule-Walker spectrum features, the Walsh spectrum features, and the Mel frequency Cepstral coefficients (MFCC) features. The MFCC based recognition system achieves the best average correct recognition. On the other hand, the Yule-Walker based recognition system achieves the worst average correct recognition. 展开更多
关键词 Arabic digits spectrum analysis speech recognition.
在线阅读 下载PDF
A Minimal Subset of Features Using Feature Selection for Handwritten Digit Recognition
14
作者 Areej Alsaafin Ashraf Elnagar 《Journal of Intelligent Learning Systems and Applications》 2017年第4期55-68,共14页
Many systems of handwritten digit recognition built using the complete set of features in order to enhance the accuracy. However, these systems lagged in terms of time and memory. These two issues are very critical is... Many systems of handwritten digit recognition built using the complete set of features in order to enhance the accuracy. However, these systems lagged in terms of time and memory. These two issues are very critical issues especially for real time applications. Therefore, using Feature Selection (FS) with suitable machine learning technique for digit recognition contributes to facilitate solving the issues of time and memory by minimizing the number of features used to train the model. This paper examines various FS methods with several classification techniques using MNIST dataset. In addition, models of different algorithms (i.e. linear, non-linear, ensemble, and deep learning) are implemented and compared in order to study their suitability for digit recognition. The objective of this study is to identify a subset of relevant features that provides at least the same accuracy as the complete set of features in addition to reducing the required time, computational complexity, and required storage for digit recognition. The experimental results proved that 60% of the complete set of features reduces the training time up to third of the required time using the complete set of features. Moreover, the classifiers trained using the proposed subset achieve the same accuracy as the classifiers trained using the complete set of features. 展开更多
关键词 digit recognition REAL Time FEATURE Selection MACHINE Learning Classification MNIST
暂未订购
Recognition of Handwritten Words from Digital Writing Pad Using MMU-SNet
15
作者 V.Jayanthi S.Thenmalar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3551-3564,共14页
In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognit... In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognition for texts written from digital writing pad through text file conversion are challen-ging due to stylus pressure,writing on glass frictionless surfaces,and being less skilled in short writing,alphabet size,style,carved symbols,and orientation angle variations.Stylus pressure on the pad changes the words in the Tamil language alphabet because the Tamil alphabets have a smaller number of lines,angles,curves,and bends.The small change in dots,curves,and bends in the Tamil alphabet leads to error in recognition and changes the meaning of the words because of wrong alphabet conversion.However,handwritten English word recognition and conversion of text files from a digital writing pad are performed through various algorithms such as Support Vector Machine(SVM),Kohonen Neural Network(KNN),and Convolutional Neural Network(CNN)for offline and online alphabet recognition.The proposed algorithms are compared with above algorithms for Tamil word recognition.The proposed MMU-SNet method has achieved good accuracy in predicting text,about 96.8%compared to other traditional CNN algorithms. 展开更多
关键词 digital handwritten writing pad tamil text recognition SYLLABLE DIALECT
在线阅读 下载PDF
MCS HOG Features and SVM Based Handwritten Digit Recognition System
16
作者 Hamayun A. Khan 《Journal of Intelligent Learning Systems and Applications》 2017年第2期21-33,共13页
Digit Recognition is an essential element of the process of scanning and converting documents into electronic format. In this work, a new Multiple-Cell Size (MCS) approach is being proposed for utilizing Histogram of ... Digit Recognition is an essential element of the process of scanning and converting documents into electronic format. In this work, a new Multiple-Cell Size (MCS) approach is being proposed for utilizing Histogram of Oriented Gradient (HOG) features and a Support Vector Machine (SVM) based classifier for efficient classification of Handwritten Digits. The HOG based technique is sensitive to the cell size selection used in the relevant feature extraction computations. Hence a new MCS approach has been used to perform HOG analysis and compute the HOG features. The system has been tested on the Benchmark MNIST Digit Database of handwritten digits and a classification accuracy of 99.36% has been achieved using an Independent Test set strategy. A Cross-Validation analysis of the classification system has also been performed using the 10-Fold Cross-Validation strategy and a 10-Fold classification accuracy of 99.26% has been obtained. The classification performance of the proposed system is superior to existing techniques using complex procedures since it has achieved at par or better results using simple operations in both the Feature Space and in the Classifier Space. The plots of the system’s Confusion Matrix and the Receiver Operating Characteristics (ROC) show evidence of the superior performance of the proposed new MCS HOG and SVM based digit classification system. 展开更多
关键词 Handwritten digit recognition MNIST Benchmark Database HOG ANALYSIS Multiple-Cell Size HOG ANALYSIS SVM Classifier 10-Fold Cross-Validation CONFUSION Matrix Receiver Operating Characteristics
暂未订购
Digit Recognition in Natural Scene Texts
17
作者 Shih-Wei Sun 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第2期199-206,共8页
Digit recognition from a natural scene text in video surveillance/broadcasting applications is a challenging research task due to blurred, font variations, twisted, and non-uniform color distribution issues with a dig... Digit recognition from a natural scene text in video surveillance/broadcasting applications is a challenging research task due to blurred, font variations, twisted, and non-uniform color distribution issues with a digit in a natural scene to be recognized. In this paper, to solve the digit number recognition problem, a principal-axis based topology contour descriptor with support vector machine (SVM) classification is proposed. The contributions of this paper include: a) a local descriptor with SVM classification for digit recognition, b) higher accuracy than the state-of-the art methods, and c) low computational power (0.03 second/digit recognition), which make this method adoptable to real-time applications. 展开更多
关键词 Index Terms--digit recognition scene text sports video video surveillance.
在线阅读 下载PDF
Handwriting Command Recognition and Digital Operation Using Digitalized Pen
18
作者 Naoya Toyozumi Junji Takahashi Guillaume Lopez 《通讯和计算机(中英文版)》 2016年第4期164-170,共7页
关键词 操作命令 识别 数字化 手写 操作算法 接口系统 响应时间 高科技
在线阅读 下载PDF
Comparative Study on VQ-Based Efficient Mandarin Speech Recognition Method
19
作者 谢湘 赵军辉 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期266-270,共5页
A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set r... A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set recognition. It has less complexity, less resource consumption but higher ARR (accurate recognition rate) compared with traditional HMM or NN approach. A large scale test on the task of 11 mandarin digits recognition shows that the WER(word error rate) can reach 3 86%. This method is suitable for being embedded in PDA (personal digital assistant), mobile phone and so on to perform voice controlling like digits dialing, name dialing, calculating, voice commanding, etc. 展开更多
关键词 speech recognition vector quantization(VQ) speaker dependent digits recognition
在线阅读 下载PDF
Multimodal behavior recognition for dairy cow digital twin construction under incomplete modalities:A modality mapping completion network approach
20
作者 Yi Zhang Yu Zhang +3 位作者 Meng Gao Xinjie Wang Baisheng Dai Weizheng Shen 《Artificial Intelligence in Agriculture》 2025年第3期459-469,共11页
The recognition of dairy cow behavior is essential for enhancing health management,reproductive efficiency,production performance,and animal welfare.This paper addresses the challenge of modality loss in multimodal da... The recognition of dairy cow behavior is essential for enhancing health management,reproductive efficiency,production performance,and animal welfare.This paper addresses the challenge of modality loss in multimodal dairy cow behavior recognition algorithms,which can be caused by sensor or video signal disturbances arising from interference,harsh environmental conditions,extreme weather,network fluctuations,and other complexities inherent in farm environments.This study introduces a modality mapping completion network that maps incomplete sensor and video data to improve multimodal dairy cow behavior recognition under conditions of modality loss.By mapping incomplete sensor or video data,the method applies a multimodal behavior recognition algorithm to identify five specific behaviors:drinking,feeding,lying,standing,and walking.The results indicate that,under various comprehensive missing coefficients(λ),the method achieves an average accuracy of 97.87%±0.15%,an average precision of 95.19%±0.4%,and an average F1 score of 94.685%±0.375%,with an overall accuracy of 94.67%±0.37%.This approach enhances the robustness and applicability of cow behavior recognition based on multimodal data in situations of modality loss,resolving practical issues in the development of digital twins for cow behavior and providing comprehensive support for the intelligent and precise management of farms. 展开更多
关键词 Multimodal data Modality loss Behavior recognition Dairy cow digital twin
原文传递
上一页 1 2 73 下一页 到第
使用帮助 返回顶部