Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally inte...Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally intensive phys-ics-based models or data-driven methods that neglect hydrodynamic con-straints and suffer from label noise in mandatory reporting data.We propose a physics-informed LightGBM framework that fuses high-resolution AIS tra-jectories,meteorological re-analyses and EU MRV logs through a temporally anchored,multi-source alignment protocol.A dual LightGBM ensemble(L1/L2)predicts RPM under laden and ballast conditions.Validation on a Panamax tanker(366 days)yields−1.52 rpm(−3%)error;ballast accuracy surpasses laden by 1.7%.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from...Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.展开更多
Learning from demonstration is widely regarded as a promising paradigm for robots to acquire diverse skills.Other than the artificial learning from observation-action pairs for machines,humans can learn to imitate in ...Learning from demonstration is widely regarded as a promising paradigm for robots to acquire diverse skills.Other than the artificial learning from observation-action pairs for machines,humans can learn to imitate in a more versatile and effective manner:acquiring skills through mere“observation”.Video to Command task is widely perceived as a promising approach for task-based learning,which yet faces two key challenges:(1)High redundancy and low frame rate of fine-grained action sequences make it difficult to manipulate objects robustly and accurately.(2)Video to Command models often prioritize accuracy and richness of output commands over physical capabilities,leading to impractical or unsafe instructions for robots.This article presents a novel Video to Command framework that employs multiple data associations and physical constraints.First,we introduce an object-level appearancecontrasting multiple data association strategy to effectively associate manipulated objects in visually complex environments,capturing dynamic changes in video content.Then,we propose a multi-task Video to Command model that utilizes object-level video content changes to compile expert demonstrations into manipulation commands.Finally,a multi-task hybrid loss function is proposed to train a Video to Command model that adheres to the constraints of the physical world and manipulation tasks.Our method achieved over 10%on BLEU_N,METEOR,ROUGE_L,and CIDEr compared to the up-to-date methods.The dual-arm robot prototype was established to demonstrate the whole process of learning from an expert demonstration of multiple skills and then executing the tasks by a robot.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs a...CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs and diseases can enhance our understanding of diseases and provide new strategies and tools for early diagnosis,treatment,and disease prevention.However,existing models have limitations in accurately capturing similarities,handling the sparse and noise attributes of association networks,and fully leveraging bioinformatical aspects from multiple viewpoints.To address these issues,this study introduces a new non-negative matrix factorization-based framework called NMFMSN.First,we incorporate circRNA sequence data and disease semantic information to compute circRNA and disease similarity,respectively.Given the sparse known associations between circRNAs and diseases,we reconstruct the network to complete more associations by imputing missing links based on neighboring circRNA and disease interactions.Finally,we integrate these two similarity networks into a non-negative matrix factorization framework to identify potential circRNA-disease associations.Upon conducting 5-fold cross-validation and leave-one-out cross-validation,the AUC values for NMFMSN reach 0.9712 and 0.9768,respectively,outperforming the currently most advanced models.Case studies on lung cancer and hepatocellular carcinoma show that NMFMSN is a good way to predict new associations between circRNAs and diseases.展开更多
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s...Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
1 School of Computer Science,Shaanxi Normal University,Xi’an 710119,China 2 Faculty of Computer Science and Control Engineering,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Ch...1 School of Computer Science,Shaanxi Normal University,Xi’an 710119,China 2 Faculty of Computer Science and Control Engineering,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China 3 Shenzhen Key Laboratory of Intelligent Bioinformatics,Shenzhen Institute of Advanced Technology,Chinese Academy of Science,Shenzhen 518055,China E-mail:xjlei@snnu.edu.cn;yalichen@snnu.edu.cn;yi.pan@siat.ac.cn Received December 9,2022;accepted July 29,2024.Abstract Identifying microbes associated with diseases is important for understanding the pathogenesis of diseases as well as for the diagnosis and treatment of diseases.In this article,we propose a method based on a multi-source association network to predict microbe-disease associations,named MMHN-MDA.First,a heterogeneous network of multimolecule associations is constructed based on associations between microbes,diseases,drugs,and metabolites.Second,the graph embedding algorithm Laplacian eigenmaps is applied to the association network to learn the behavior features of microbe nodes and disease nodes.At the same time,the denoising autoencoder(DAE)is used to learn the attribute features of microbe nodes and disease nodes.Finally,attribute features and behavior features are combined to get the final embedding features of microbes and diseases,which are fed into the convolutional neural network(CNN)to predict the microbedisease associations.Experimental results show that the proposed method is more effective than existing methods.In addition,case studies on bipolar disorder and schizophrenia demonstrate good predictive performance of the MMHN-MDA model,and further,the results suggest that gut microbes may influence host gene expression or compounds in the nervous system,such as neurotransmitters,or metabolites that alter the blood-brain barrier.展开更多
Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of ble...Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.展开更多
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
Knowledge Discovery in Databases is gaining attention and raising new hopes for traditional Chinese medicine (TCM) researchers. It is a useful tool in understanding and deciphering TCM theories. Aiming for a better ...Knowledge Discovery in Databases is gaining attention and raising new hopes for traditional Chinese medicine (TCM) researchers. It is a useful tool in understanding and deciphering TCM theories. Aiming for a better understanding of Chinese herbal property theory (CHPT), this paper performed an improved association rule learning to analyze semistructured text in the book entitled Shennong's Classic of Materia Medica. The text was firstly annotated and transformed to well-structured multidimensional data. Subsequently, an Apriori algorithm was employed for producing association rules after the sensitivity analysis of parameters. From the confirmed 120 resulting rules that described the intrinsic relationships between herbal property (qi, flavor and their combinations) and herbal efficacy, two novel fundamental principles underlying CHPT were acquired and further elucidated: (1) the many-to-one mapping of herbal efficacy to herbal property; (2) the nonrandom overlap between the related efficacy of qi and flavor. This work provided an innovative knowledge about CHPT, which would be helpful for its modern research.展开更多
A specialized Hungarian algorithm was developed here for the maximum likelihood data association problem with two implementation versions due to presence of false alarms and missed detections. The maximum likelihood d...A specialized Hungarian algorithm was developed here for the maximum likelihood data association problem with two implementation versions due to presence of false alarms and missed detections. The maximum likelihood data association problem is formulated as a bipartite weighted matching problem. Its duality and the optimality conditions are given. The Hungarian algorithm with its computational steps, data structure and computational complexity is presented. The two implementation versions, Hungarian forest (HF) algorithm and Hungarian tree (HT) algorithm, and their combination with the naYve auction initialization are discussed. The computational results show that HT algorithm is slightly faster than HF algorithm and they are both superior to the classic Munkres algorithm.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved b...In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements.展开更多
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin...Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.展开更多
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ...Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective.展开更多
In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese...In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.展开更多
基金support from the“Ocean-going Vessel Meteorological Navigation System”project funded under the Key Core Technology Breakthrough Program for Transportation Equipment(GJ-2025-01)COSCO Shipping Group’s Third Batch of Scientific Research Projects from the 14th Five-Year Plan.
文摘Accurate prediction of main-engine rotational speed(RPM)is pivotal for en-ergy-efficient ship operation and compliance with emerging carbon-intensity regulations.Existing approaches either rely on computationally intensive phys-ics-based models or data-driven methods that neglect hydrodynamic con-straints and suffer from label noise in mandatory reporting data.We propose a physics-informed LightGBM framework that fuses high-resolution AIS tra-jectories,meteorological re-analyses and EU MRV logs through a temporally anchored,multi-source alignment protocol.A dual LightGBM ensemble(L1/L2)predicts RPM under laden and ballast conditions.Validation on a Panamax tanker(366 days)yields−1.52 rpm(−3%)error;ballast accuracy surpasses laden by 1.7%.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.
基金Sponsored by Beijing Youth Innovation Talent Support Program for Urban Greening and Landscaping——The 2024 Special Project for Promoting High-Quality Development of Beijing’s Landscaping through Scientific and Technological Innovation(KJCXQT202410).
文摘Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development.
基金Supported by Zhejiang Provincial Key Research and Development Program(Grant No.2021C04015)。
文摘Learning from demonstration is widely regarded as a promising paradigm for robots to acquire diverse skills.Other than the artificial learning from observation-action pairs for machines,humans can learn to imitate in a more versatile and effective manner:acquiring skills through mere“observation”.Video to Command task is widely perceived as a promising approach for task-based learning,which yet faces two key challenges:(1)High redundancy and low frame rate of fine-grained action sequences make it difficult to manipulate objects robustly and accurately.(2)Video to Command models often prioritize accuracy and richness of output commands over physical capabilities,leading to impractical or unsafe instructions for robots.This article presents a novel Video to Command framework that employs multiple data associations and physical constraints.First,we introduce an object-level appearancecontrasting multiple data association strategy to effectively associate manipulated objects in visually complex environments,capturing dynamic changes in video content.Then,we propose a multi-task Video to Command model that utilizes object-level video content changes to compile expert demonstrations into manipulation commands.Finally,a multi-task hybrid loss function is proposed to train a Video to Command model that adheres to the constraints of the physical world and manipulation tasks.Our method achieved over 10%on BLEU_N,METEOR,ROUGE_L,and CIDEr compared to the up-to-date methods.The dual-arm robot prototype was established to demonstrate the whole process of learning from an expert demonstration of multiple skills and then executing the tasks by a robot.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金the Gansu Province Industrial Support Plan(No.2023CYZC-25)Natural Science Foundation of Gansu Province(No.23JRRA770)the National Natural Science Foundation of China(No.62162040)。
文摘CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs and diseases can enhance our understanding of diseases and provide new strategies and tools for early diagnosis,treatment,and disease prevention.However,existing models have limitations in accurately capturing similarities,handling the sparse and noise attributes of association networks,and fully leveraging bioinformatical aspects from multiple viewpoints.To address these issues,this study introduces a new non-negative matrix factorization-based framework called NMFMSN.First,we incorporate circRNA sequence data and disease semantic information to compute circRNA and disease similarity,respectively.Given the sparse known associations between circRNAs and diseases,we reconstruct the network to complete more associations by imputing missing links based on neighboring circRNA and disease interactions.Finally,we integrate these two similarity networks into a non-negative matrix factorization framework to identify potential circRNA-disease associations.Upon conducting 5-fold cross-validation and leave-one-out cross-validation,the AUC values for NMFMSN reach 0.9712 and 0.9768,respectively,outperforming the currently most advanced models.Case studies on lung cancer and hepatocellular carcinoma show that NMFMSN is a good way to predict new associations between circRNAs and diseases.
基金funding within the Wheat BigData Project(German Federal Ministry of Food and Agriculture,FKZ2818408B18)。
文摘Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金supported by the National Natural Science Foundation of China under Grant Nos.62272288 and U22A2041the Fundamental Research Funds for the Central Universities of China,and Shaanxi Normal University under Grant No.GK202302006.
文摘1 School of Computer Science,Shaanxi Normal University,Xi’an 710119,China 2 Faculty of Computer Science and Control Engineering,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China 3 Shenzhen Key Laboratory of Intelligent Bioinformatics,Shenzhen Institute of Advanced Technology,Chinese Academy of Science,Shenzhen 518055,China E-mail:xjlei@snnu.edu.cn;yalichen@snnu.edu.cn;yi.pan@siat.ac.cn Received December 9,2022;accepted July 29,2024.Abstract Identifying microbes associated with diseases is important for understanding the pathogenesis of diseases as well as for the diagnosis and treatment of diseases.In this article,we propose a method based on a multi-source association network to predict microbe-disease associations,named MMHN-MDA.First,a heterogeneous network of multimolecule associations is constructed based on associations between microbes,diseases,drugs,and metabolites.Second,the graph embedding algorithm Laplacian eigenmaps is applied to the association network to learn the behavior features of microbe nodes and disease nodes.At the same time,the denoising autoencoder(DAE)is used to learn the attribute features of microbe nodes and disease nodes.Finally,attribute features and behavior features are combined to get the final embedding features of microbes and diseases,which are fed into the convolutional neural network(CNN)to predict the microbedisease associations.Experimental results show that the proposed method is more effective than existing methods.In addition,case studies on bipolar disorder and schizophrenia demonstrate good predictive performance of the MMHN-MDA model,and further,the results suggest that gut microbes may influence host gene expression or compounds in the nervous system,such as neurotransmitters,or metabolites that alter the blood-brain barrier.
文摘Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
文摘Knowledge Discovery in Databases is gaining attention and raising new hopes for traditional Chinese medicine (TCM) researchers. It is a useful tool in understanding and deciphering TCM theories. Aiming for a better understanding of Chinese herbal property theory (CHPT), this paper performed an improved association rule learning to analyze semistructured text in the book entitled Shennong's Classic of Materia Medica. The text was firstly annotated and transformed to well-structured multidimensional data. Subsequently, an Apriori algorithm was employed for producing association rules after the sensitivity analysis of parameters. From the confirmed 120 resulting rules that described the intrinsic relationships between herbal property (qi, flavor and their combinations) and herbal efficacy, two novel fundamental principles underlying CHPT were acquired and further elucidated: (1) the many-to-one mapping of herbal efficacy to herbal property; (2) the nonrandom overlap between the related efficacy of qi and flavor. This work provided an innovative knowledge about CHPT, which would be helpful for its modern research.
基金This project was supported by the National Natural Science Foundation of China (60272024).
文摘A specialized Hungarian algorithm was developed here for the maximum likelihood data association problem with two implementation versions due to presence of false alarms and missed detections. The maximum likelihood data association problem is formulated as a bipartite weighted matching problem. Its duality and the optimality conditions are given. The Hungarian algorithm with its computational steps, data structure and computational complexity is presented. The two implementation versions, Hungarian forest (HF) algorithm and Hungarian tree (HT) algorithm, and their combination with the naYve auction initialization are discussed. The computational results show that HT algorithm is slightly faster than HF algorithm and they are both superior to the classic Munkres algorithm.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金National Social Science Foundation of China,No.15BJY051Open Topic of Hunan Key Laboratory of Land Resources Evaluation and Utilization,No.SYS-ZX-202002Research Project of Appraisement Committee of Social Sciences Research Achievements of Hunan Province,No.XSP18ZDI031。
文摘In view of the lack of comprehensive evaluation and analysis from the combination of natural and human multi-dimensional factors,the urban surface temperature patterns of Changsha in 2000,2009 and 2016 are retrieved based on multi-source spatial data(Landsat 5 and Landsat 8 satellite image data,POI spatial big data,digital elevation model,etc.),and 12 natural and human factors closely related to urban thermal environment are quickly obtained.The standard deviation ellipse and spatial principal component analysis(PCA)methods are used to analyze the effect of urban human residential thermal environment and its influencing factors.The results showed that the heat island area increased by 547 km~2 and the maximum surface temperature difference reached 10.1℃during the period 2000–2016.The spatial distribution of urban heat island was mainly concentrated in urban built-up areas,such as industrial and commercial agglomerations and densely populated urban centers.The spatial distribution pattern of heat island is gradually decreasing from the urban center to the suburbs.There were multiple high-temperature centers,such as Wuyi square business circle,Xingsha economic and technological development zone in Changsha County,Wangcheng industrial zone,Yuelu industrial agglomeration,and Tianxin industrial zone.From 2000 to 2016,the main axis of spatial development of heat island remained in the northeast-southwest direction.The center of gravity of heat island shifted 2.7 km to the southwest with the deflection angle of 54.9°in 2000–2009.The center of gravity of heat island shifted to the northeast by 4.8 km with the deflection angle of 60.9°in 2009–2016.On the whole,the change of spatial pattern of thermal environment in Changsha was related to the change of urban construction intensity.Through the PCA method,it was concluded that landscape pattern,urban construction intensity and topographic landforms were the main factors affecting the spatial pattern of urban thermal environment of Changsha.The promotion effect of human factors on the formation of heat island effect was obviously greater than that of natural factors.The temperature would rise by 0.293℃under the synthetic effect of human and natural factors.Due to the complexity of factors influencing the urban thermal environment of human settlements,the utilization of multi-source data could help to reveal the spatial pattern and evolution law of urban thermal environment,deepen the understanding of the causes of urban heat island effect,and clarify the correlation between human and natural factors,so as to provide scientific supports for the improvement of the quality of urban human settlements.
基金funded by the High-Quality and Cutting-Edge Discipline Construction Project for Universities in Beijing (Internet Information,Communication University of China).
文摘Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.
基金Under the auspices of Natural Science Foundation of China(No.41971166)。
文摘Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective.
基金supported by the National Natural Science Foundation of China(Grant No.:U2202213)the Special Program for the Major Science and Technology Projects of Yunnan Province,China(Grant Nos.:202102AE090051-1-01,and 202202AE090001).
文摘In traditional medicine and ethnomedicine,medicinal plants have long been recognized as the basis for materials in therapeutic applications worldwide.In particular,the remarkable curative effect of traditional Chinese medicine during corona virus disease 2019(COVID-19)pandemic has attracted extensive attention globally.Medicinal plants have,therefore,become increasingly popular among the public.However,with increasing demand for and profit with medicinal plants,commercial fraudulent events such as adulteration or counterfeits sometimes occur,which poses a serious threat to the clinical outcomes and interests of consumers.With rapid advances in artificial intelligence,machine learning can be used to mine information on various medicinal plants to establish an ideal resource database.We herein present a review that mainly introduces common machine learning algorithms and discusses their application in multi-source data analysis of medicinal plants.The combination of machine learning algorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective evaluation of the quality of medicinal plants.The findings of this review provide new possibilities for promoting the development and utilization of medicinal plants.