期刊文献+
共找到562,267篇文章
< 1 2 250 >
每页显示 20 50 100
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors
1
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances multi-scale structure Dense energy storage
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
2
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Using multi-scale interaction mechanisms in yolk-shell structured C/Co composite materials for electromagnetic wave absorption
3
作者 Jintang Zhou Kexin Zou +11 位作者 Jiaqi Tao Jun Liu Yijie Liu Lvtong Duan Zhenyu Cheng Borui Zha Zhengjun Yao Guiyu Peng Xuewei Tao Hexia Huang Yao Ma Peijiang Liu 《Journal of Materials Science & Technology》 2025年第12期36-44,共9页
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin... Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field. 展开更多
关键词 MOFS multi-scale regulation Yolk-shell structure Amorphous carbon Oxygen vacancy Microwave absorption
原文传递
Multi-scaled heterostructure enables superior strength-ductility combination of a CoCrFeMnN compositionally-complex alloy
4
作者 Haizheng Pan Ye Yuan +5 位作者 Yuliang Yang Zhufeng He Shuang Jiang Mingwei Zhu Weiye Chen Nan Jia 《Journal of Materials Science & Technology》 2025年第19期82-93,共12页
Compositionally-complex alloys(CCAs)with the face-centered cubic(fcc)structure exhibit excellent frac-ture toughness and stable mechanical property across a broad temperature range from cryogenic to room temperatures.... Compositionally-complex alloys(CCAs)with the face-centered cubic(fcc)structure exhibit excellent frac-ture toughness and stable mechanical property across a broad temperature range from cryogenic to room temperatures.However,yield strength of those alloys is usually low,making them difficult to meet the demands of practical engineering application.In a prototype CCA with the nominal chemical composition of Co10Cr10Fe49Mn30N1(atom percent),a multi-scaled heterostructure from sample to atomic scales was obtained by performing triaxial cyclic compression and short-term annealing on the blocky alloy.The ma-terial exhibits a heterogeneous distribution of strain at the sample scale.At the grain scale,dense twins and twin-twin network,laths featured with local chemical order as well as dislocation cells jointly hinder plastic deformation.At the nanoscale,the chemical order within grains also impedes dislocation motion.During plastic deformation,different sample positions within the heterogeneous material and various regions at each position undergo coordinated deformation,resulting in significant hetero-deformation in-duced strengthening.Simultaneously,the continuously activated dislocations,stacking faults and nano-twins lead to a high yield strength of 1020 MPa in the material while maintaining a fracture elongation of 30%.This study provides new insights for the design and development of high-performance metallic materials. 展开更多
关键词 Compositionally-complex alloy Heterogeneous structure Twin STRENGTH
原文传递
Enhanced permeability mechanism in coal seams through liquid nitrogen immersion:multi-scale pore structure analysis
5
作者 LI Xue-long CHEN De-you +5 位作者 LIU Shu-min WANG Deng-ke SUN Hai-tao YIN Da-wei ZHANG Yong-gang GONG Bin 《Journal of Central South University》 2025年第7期2732-2749,共18页
The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for e... The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for efficient extraction.This study systematically investigates the impact of liquid nitrogen immersion(LNI)on the coal’s pore structure and its mechanism of enhancing permeability with a combination of quantitative nuclear magnetic resonance(NMR)analysis,nitrogen adsorption experiments,and fractal dimension calculations.The results demonstrate that LNI can damage the coal’s pore structure and promote fracture expansion through thermal stress induction and moisture phase transformation,thereby enhancing the permeability of coal seams.The T_(2)peak area in the NMR experiments on coal samples subjected to LNI treatment shows a significant increase,the Brunauer-Emmett-Teller(BET)specific surface area decreases to 6.02 m^(2)/g,and the Barrett-Joyner-Halenda(BJH)total pore volume increases to 14.99 mm^(3)/g.Furthermore,changes in fractal dimensions(D_(1)rising from 2.804 to 2.837,and D_(2)falling from 2.757 to 2.594)indicate a notable enhancement in the complexity of the pore structure.With increasing LNI cycles,the adsorption capacity of the coal samples diminishes,suggesting a significant optimization of the pore structure.This optimization is particularly evident in the reconstruction of the micropore structure,which in turn greatly enhances the complexity and connectivity of the sample’s pore network.In summary,the study concludes that LNI technology can effectively improve the permeability of coal seams and the extraction efficiency of coalbed methane by optimizing the micropore structure and enhancing pore connectivity,which offers a potential method for enhancing the permeability of gas-bearing coal seams and facilitating the development and utilization of coalbed methane. 展开更多
关键词 liquid nitrogen immersion(LNI) coal seam pore structure PERMEABILITY nuclear magnetic resonance(NMR) fractal dimension
在线阅读 下载PDF
Effect of Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentation on the multi-scale structure and physicochemical properties 被引量:4
6
作者 Xiaoqing Xie Min zheng +5 位作者 Yanan Bai Ziqi Zhang Min Zhang Zhifei Chen Xinzhong Hu Juxiu Li 《Food Bioscience》 SCIE 2023年第2期783-790,共8页
Modified starch was better suitable for food processing,and fermentation was one of the effective methods to modify starch.This study investigated the separate and synergistic fermentation of Lactiplantibacillus plant... Modified starch was better suitable for food processing,and fermentation was one of the effective methods to modify starch.This study investigated the separate and synergistic fermentation of Lactiplantibacillus plantarum and Saccharomyces cerevisiae could whether affect the multi-scale structure and physicochemical properties of highland barley starch(HBS).The results of multi-scale structure determination of HBS showed that compared with unfermented HBS(32.27%),fermentation showed a significant increase in relative crystallinity(35.49-39.81%),while the crystal type of HBS as observed from X-ray diffraction(A-type crystalline pattern)did not change.The small angle X-ray scattering revealed that fermentation reduced the amorphous region and increased the crystalline layer thickness of the HBS.Consequently,the changes in the physicochemical properties showed that the peak viscosity,trough viscosity,and final viscosity of HBS were reduced after fermentation,and the aging of starch gel was delayed significantly.Our results showed that Lactiplantibacillus plantarum and Saccharomyces cerevisiae fermentations improve the physicochemical properties of HBS by modifying the multi-scale structure of starch,especially the synergistic fermentation effect was more effective. 展开更多
关键词 FERMENTATION Highland barley starch multi-scale structure Physicochemical properties
原文传递
MULTI-SCALE STRUCTURES IN EMULSION AND MICROSPHERE COMPLEX SYSTEMS 被引量:1
7
作者 Guanghui Ma Fangling Gong +3 位作者 Guohua Hu Dongxia Ha Rong Liu Renwei Wang 《China Particuology》 SCIE EI CAS CSCD 2005年第6期296-303,共8页
Multi-scale structures involved in emulsion and microsphere complex systems are presented and discussed. The stability and spatio-temporal structures of emulsions, as well as nano-structures formed on the surface of m... Multi-scale structures involved in emulsion and microsphere complex systems are presented and discussed. The stability and spatio-temporal structures of emulsions, as well as nano-structures formed on the surface of microspheres after polymerization, are affected by the molecular emulsifier/stabilizer structures and the adsorbed emulsifier/stabilizer nano-structures on the oil/water interface. The broad size distribution and variation of surface features of droplets are responsible for variations of the adsorbed emulsifier/stabilizer structures and the stability of the emulsions. On the other hand, preparation of a uniformly sized emulsion and employment of a combined emulsifier/stabilizer system can preserve the stability of the emulsions and microspheres. The above phenomena should be modeled by a multiscale method, in order to maintain the stability of individual emulsion systems and realize the desired nano-structures of microspheres by choosing adequate emulsifier/stabilizer and experimental parameters. 展开更多
关键词 multi-scale structure spatio-temporal structure EMULSION MICROSPHERE emulsifier/stabilizer nano-structure
在线阅读 下载PDF
Multi-scale structure engineering of covalent organic framework for electrochemical charge storage 被引量:1
8
作者 Xiaofang Zhang Fangling Li +4 位作者 Shuangqiao Yang Baiqi Song Richu Luo Rui Xiong Weilin Xu 《SusMat》 SCIE EI 2024年第1期4-33,共30页
Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable... Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable topological architecture,pre-designable periodic skeleton,well-defined micro-/meso-pore,large specific surface area,and customizable electroactive functionality.Those benefits make COFs as promising candidates for advanced electrochemical energy storage.Especially,for now,structure engineering of COFs from multiscale aspects has been conducted to enable optimal overall electrochemical performance in terms of structure durability,electrical conductivity,redox activity,and charge storage.In this review,we give a fundamental and insightful study on the correlations between multi-scale structure engineering and eventual electrochemical properties of COFs,started with introducing their basic chemistries and charge storage principles.The careful discussion on the significant achievements in structure engineering of COFs from linkages,redox sites,polygon skeleton,crystal nanostructures,and composite microstructures,and further their effects on the electrochemical behavior of COFs are presented.Finally,the timely cutting-edge perspectives and in-depth insights into COFbased electrodematerials to rationally screen their electrochemical behaviors for addressing future challenges and implementing electrochemical energy storage applications are proposed. 展开更多
关键词 covalent organic frameworks electrochemical energy storage multi-scale structure engineering structure-performance correlation
原文传递
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
9
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention TRANSFORMER
在线阅读 下载PDF
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
10
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 Remote sensing change detection deep learning wavelet transform multi-scale
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
11
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Electric-Field-Driven Generative Nanoimprinting for Tilted Metasurface Nanostructures
12
作者 Yu Fan Chunhui Wang +6 位作者 Hongmiao Tian Xiaoming Chen Ben QLi Zhaomin Wang Xiangming Li Xiaoliang Chen Jinyou Shao 《Nano-Micro Letters》 2026年第1期290-305,共16页
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p... Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality. 展开更多
关键词 Generative nanoimprinting Electric field assistance Tilted metasurface structures Large-area fabrication
在线阅读 下载PDF
Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals
13
作者 Binchang Ma Xinhai Yu Gang Huang 《Computers, Materials & Continua》 2026年第1期332-352,共21页
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t... Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design. 展开更多
关键词 Aluminum crystal vacancy defect microstructural characterization stress response electronic structure thermomechanical coupling
在线阅读 下载PDF
Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components 被引量:26
14
作者 Chuang WANG Jihong ZHU +5 位作者 Manqiao WU Jie HOU Han ZHOU Lu MENG Chenyang LI Weihong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期386-398,共13页
By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as red... By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight.To achieve this purpose,a two-step procedure is developed to design and optimize the innovative structures.Initially,the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths.Afterwards,the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method.And lattice-based optimization is performed to obtain the optimal crosssection area of the lattice structures.Finally,two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework.The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs. 展开更多
关键词 Aerospace vehicle components Lattice-based optimization multi-scale Solid-lattice hybrid structure Topology optimization
原文传递
In-situ multi-scale structural engineering of cathode and electrolyte for high-rate and long-life Mg metal batteries 被引量:1
15
作者 Guyue Li Zhenguo Yao Chilin Li 《Journal of Energy Chemistry》 2025年第6期44-53,I0002,共11页
Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium me... Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs. 展开更多
关键词 Vanadium pentoxide cathode Electrolyte additive Solvation structure Interface manipulation Magnesium metal batteries
在线阅读 下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
16
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure multi-scale optimization Topology optimization Fiber winding angle structural compliance
在线阅读 下载PDF
MULTI-SCALE FE COMPUTATION FOR THE STRUCTURES OF COMPOSITE MATERIALS WITH SMALL PERIODIC CONFIGURATION UNDER CONDITION OF COUPLED THERMOELASTICITY 被引量:11
17
作者 冯永平 崔俊芝 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第1期54-63,共10页
In this paper,the multi-scale computational method for a structure of composite materials with a small periodic configuration under the coupled thermoelasticity condition is presented. The two-scale asymptotic(TSA)exp... In this paper,the multi-scale computational method for a structure of composite materials with a small periodic configuration under the coupled thermoelasticity condition is presented. The two-scale asymptotic(TSA)expression of the displacement and the increment of temperature for composite materials with a small periodic configuration under the condition of thermoelasticity are briefly shown at first,then the multi-scale finite element algorithms based on TSA are discussed.Finally the numerical results evaluated by the multi-scale computational method are shown.It demonstrates that the basic configuration and the increment of temperature strongly influence the local strains and local stresses inside a basic cell. 展开更多
关键词 two-scale method THERMOELASTICITY periodic structure
在线阅读 下载PDF
Multi-scale analysis of the spatial structure of China’s major function zoning 被引量:9
18
作者 WANG Yafei FAN Jie 《Journal of Geographical Sciences》 SCIE CSCD 2020年第2期197-211,共15页
The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of ur... The spatial structures of China’s Major Function Zoning are important constraining indicators in all types of spatial planning and key parameters for accurately downscaling major functions.Taking the proportion of urbanization zones,agricultural development zones and ecological security zones as the basic parameter,this paper explores the spatial structures of major function zoning at different scales using spatial statistics,spatial modeling and landscape metrics methods.The results show:First,major function zones have spatial gradient structures,which are prominently represented by latitudinal and longitudinal gradients,a coastal distance gradient,and an eastern-central-western gradient.Second,the pole-axis system structure and core-periphery structure exist at provincial scales.The general principle of the pole-axis structure is that as one moves along the distance axis,the proportion of urbanization zones decreases and the proportion of ecological security zones increases.This also means that the proportion of different function zones has a ring-shaped spatial differentiation principle with distance from the core.Third,there is a spatial mosaic structure at the city and county scale.This spatial mosaic structure has features of both spatial heterogeneity,such as agglomeration and dispersion,as well as of mutual,adjacent topological correlation and spatial proximity.The results of this study contribute to scientific knowledge on major function zones and the principles of spatial organization,and it acts as an important reference for China’s integrated geographical zoning. 展开更多
关键词 China major function zoning multi-scale spatial gradient pole-axis CORE-PERIPHERY spatial mosaic
原文传递
Multi-scale fatigue damage model for steel structures working under high temperature 被引量:1
19
作者 Huajing Guo Bin Sun Zhaoxia Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期615-623,共9页
In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fat... In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model. 展开更多
关键词 Steel structures High temperature multi-scale damage model MICROCRACKS GENERALIZED self-consistentmethod
在线阅读 下载PDF
MULTI-SCALE COHERENT STRUCTURES IN TURBULENT BOUNDARY LAYER DETECTED BY LOCALLY AVERAGED VELOCITY STRUCTURE FUNCTIONS 被引量:1
20
作者 刘建华 姜楠 +1 位作者 王振东 舒玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第4期495-504,共10页
The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which ... The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which describes the relative motions of straining and compressing for multi_scale eddy structures in turbulent flows, was put forward based on the theory of locally multi_scale average. Based on the consistency between coarse_grained velocity structure function and Harr wavelet transformation,detecting method was presented, by which the coherent structures and their intermittency was identified by multi_scale flatness factor calculated by locally average structure function. Phase_averaged evolution course for multi_scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi_scale coherent eddy structures and their effects on statistics of turbulent flows were studied. 展开更多
关键词 turbulent boundary layer coherent structure flatness factor intermittency locally averaged velocity structure function
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部