期刊文献+
共找到20,964篇文章
< 1 2 250 >
每页显示 20 50 100
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
1
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Multi-scale Representation of Building Feature in Urban GIS 被引量:1
2
作者 AI Tinghua WANG Hong LIU Yaolin 《Geo-Spatial Information Science》 2002年第2期37-44,共8页
This paper aims at multi_scale representation of urban GIS,presenting a model to dynamically generalize the building on the basis of Delaunay triangulation model.Considering the constraints of position accuracy,statis... This paper aims at multi_scale representation of urban GIS,presenting a model to dynamically generalize the building on the basis of Delaunay triangulation model.Considering the constraints of position accuracy,statistical area balance and orthogonal characteristics in building cluster generalization,this paper gives a progressive algorithm of building cluster aggregation,including conflict detection(where),object(who)displacement,and geometrical combination operation(how).The algorithm has been realized in an interactive generalization system and some experiment illustrations are provided. 展开更多
关键词 multi_scale representation map generalization building aggregation Delaunay triangulation
在线阅读 下载PDF
MMHCA:Multi-feature representations based on multi-scale hierarchical contextual aggregation for UAV-view geo-localization
3
作者 Nanhua CHEN Tai-shan LOU Liangyu ZHAO 《Chinese Journal of Aeronautics》 2025年第6期517-532,共16页
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e... In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation. 展开更多
关键词 Geo-localization Image retrieval UAV Hierarchical contextual aggregation Multi-feature representations
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
4
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
A multi-scale and multi-mechanism coupled model for carbon isotope fractionation of methane during shale gas production 被引量:1
5
作者 Jun Wang Fang-Wen Chen +4 位作者 Wen-Biao Li Shuang-Fang Lu Sheng-Xian Zhao Yong-Yang Liu Zi-Yi Wang 《Petroleum Science》 2025年第7期2719-2746,共28页
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho... Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies. 展开更多
关键词 Shale gas Isotope fractionation multi-scale Production prediction Adsorbed/free gas ratio
原文传递
On the representations of string pairs over virtual field
6
作者 TAO Kun FU Chang-Jian 《四川大学学报(自然科学版)》 北大核心 2025年第5期1103-1108,共6页
Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-represent... Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism. 展开更多
关键词 string pair string representation band representation
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
7
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
8
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking:A Tool for Exploring the Impact of Changing Climate on Mid-to-High Latitude Weather Extremes 被引量:1
9
作者 Dehai LUO Wenqi ZHANG Binhe LUO 《Advances in Atmospheric Sciences》 2025年第10期2018-2035,共18页
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and... A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread. 展开更多
关键词 nonlinear Schrödinger equation nonlinear multi-scale interaction model of atmospheric blocking meridional background potential vorticity gradient climate change mid-to-high latitude weather extremes
在线阅读 下载PDF
The Role of Multi-scale Integrated Hierarchical Intervention in Preventing Psychological Crises among College Students
10
作者 XIONG Jun ZHAO Xiaoqing +3 位作者 SHUAI Yixin FENG Yuqi ZHUGE Junzhe LUO Jiaming 《贵州大学学报(自然科学版)》 2025年第4期18-25,共8页
Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a co... Mental health problems and potential psychological crises affect the healthy growth and learning performance of college students.Effective and suitable prevention of psychological crises among college students is a continuous challenge university managers face.To explore a method of preventing psychological crises among college students,we measured 38661 students by using SCL-90(symptom check list-90)and screened out 5790 students with positive results.Then,we measured 33188 students by using PHQ-9(patient health questionnaire-9)and screened out 603 students with suicidal ideation or behavior;we interviewed 392 students by using GAQ(growth adversity questionnaire).The number of students who had positive results at both phases is 155.As a result,we obtained a data set(N=76)by integrating the students who tested positive on the PHQ-9(i.e.total score≥20)with those who completed the PHQ-9 and GAQ.In addition,we obtained a data set(N=50)by excluding the cases in which the GAQ score is 0.With regard to QCA(qualitative comparative analysis)results,the data set(N=76)exhibits 5 constellations of solutions with a coverage rate greater than 0.7,and the first eight indicators of the PHQ-9 constitute the explanatory variables in the combined solutions.About the data set(N=50),the combined solutions are extremely complicated and the explanatory variables encompass indicators from both the PHQ-9 and GAQ.All these mean that the multi-scale could more comprehensively reflect mental health states of college students,thus enhance the accuracy and effectiveness of the corresponding hierarchical intervention,and finally provide support for preventing psychological crises in universities. 展开更多
关键词 multi-scale hierarchical intervention preventing psychological crises
在线阅读 下载PDF
Multi-scale modeling of the multi-phase flow in water electrolyzers for green hydrogen production
11
作者 Lizhen Wu Qing Wang +2 位作者 Wenzhi Li Mingcong Tang Liang An 《Materials Reports(Energy)》 2025年第3期40-49,共10页
Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This... Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production. 展开更多
关键词 Water electrolyzers Bubble dynamics multi-scale MULTI-PHASE MODELING
在线阅读 下载PDF
Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells
12
作者 Chuanyun Xu Die Hu +3 位作者 Yang Zhang Shuaiye Huang Yisha Sun Gang Li 《Computers, Materials & Continua》 2025年第4期559-574,共16页
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an... Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening. 展开更多
关键词 Cervical abnormal cells image detection multi-scale feature fusion contextual information
在线阅读 下载PDF
Using multi-scale interaction mechanisms in yolk-shell structured C/Co composite materials for electromagnetic wave absorption
13
作者 Jintang Zhou Kexin Zou +11 位作者 Jiaqi Tao Jun Liu Yijie Liu Lvtong Duan Zhenyu Cheng Borui Zha Zhengjun Yao Guiyu Peng Xuewei Tao Hexia Huang Yao Ma Peijiang Liu 《Journal of Materials Science & Technology》 2025年第12期36-44,共9页
Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distin... Advanced chemical engineering for simultaneous modulation of nanomaterial morphology, defects, interfaces, and structure to enhance electromagnetic and microwave absorption (MA) performance. However, accurately distinguishing the MA contributions of different scale factors and tuning the optimal combined effects remains a formidable challenge. This study employs a synergistic approach combining template protection etching and vacuum annealing to construct a controlled system of micrometer-sized cavities and amorphous carbon matrices in metal-organic framework (MOF) derivatives. The results demonstrate that the spatial effects introduced by the hollow structure enhance dielectric loss but significantly weaken impedance matching. By increasing the proportion of amorphous carbon, the balance between electromagnetic loss and impedance matching can be effectively maintained. Importantly, in a suitable graphitization environment, the presence of oxygen vacancies in amorphous carbon can induce significant polarization to compensate for the reduced conductivity loss due to the absence of sp2 carbon. Through the synergistic effects of morphology and composition, the samples exhibit a broader absorption bandwidth (6.28 GHz) and stronger reflection loss (−61.64 dB) compared to the original MOF. In conclusion, this study aims to elucidate the multiscale impacts of macroscopic micro-nano structure and microscopic defect engineering, providing valuable insights for future research in this field. 展开更多
关键词 MOFS multi-scale regulation Yolk-shell structure Amorphous carbon Oxygen vacancy Microwave absorption
原文传递
Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion
14
作者 Jianxiang Cao Jinyang Wu +5 位作者 Wenqian Shang Chunhua Wang Kang Song Tong Yi Jiajun Cai Haibin Zhu 《Computers, Materials & Continua》 2025年第5期2659-2675,共17页
With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of... With the rapid growth of socialmedia,the spread of fake news has become a growing problem,misleading the public and causing significant harm.As social media content is often composed of both images and text,the use of multimodal approaches for fake news detection has gained significant attention.To solve the problems existing in previous multi-modal fake news detection algorithms,such as insufficient feature extraction and insufficient use of semantic relations between modes,this paper proposes the MFFFND-Co(Multimodal Feature Fusion Fake News Detection with Co-Attention Block)model.First,the model deeply explores the textual content,image content,and frequency domain features.Then,it employs a Co-Attention mechanism for cross-modal fusion.Additionally,a semantic consistency detectionmodule is designed to quantify semantic deviations,thereby enhancing the performance of fake news detection.Experimentally verified on two commonly used datasets,Twitter and Weibo,the model achieved F1 scores of 90.0% and 94.0%,respectively,significantly outperforming the pre-modified MFFFND(Multimodal Feature Fusion Fake News Detection with Attention Block)model and surpassing other baseline models.This improves the accuracy of detecting fake information in artificial intelligence detection and engineering software detection. 展开更多
关键词 Fake news detection MULTIMODAL cross-modal ambiguity computation multi-scale feature fusion
在线阅读 下载PDF
MA-VoxelMorph:Multi-scale attention-based VoxelMorph for nonrigid registration of thoracoabdominal CT images
15
作者 Qing Huang Lei Ren +3 位作者 Tingwei Quan Minglei Yang Hongmei Yuan Kai Cao 《Journal of Innovative Optical Health Sciences》 2025年第1期135-151,共17页
This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualiz... This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualization enhancement.However,fine structure registration of complex thoracoabdominal organs and large deformation registration caused by respiratory motion is challenging.To deal with this problem,we propose a 3D multi-scale attention VoxelMorph(MAVoxelMorph)registration network.To alleviate the large deformation problem,a multi-scale axial attention mechanism is utilized by using a residual dilated pyramid pooling for multi-scale feature extraction,and position-aware axial attention for long-distance dependencies between pixels capture.To further improve the large deformation and fine structure registration results,a multi-scale context channel attention mechanism is employed utilizing content information via adjacent encoding layers.Our method was evaluated on four public lung datasets(DIR-Lab dataset,Creatis dataset,Learn2Reg dataset,OASIS dataset)and a local dataset.Results proved that the proposed method achieved better registration performance than current state-of-the-art methods,especially in handling the registration of large deformations and fine structures.It also proved to be fast in 3D image registration,using about 1.5 s,and faster than most methods.Qualitative and quantitative assessments proved that the proposed MA-VoxelMorph has the potential to realize precise and fast tumor localization in clinical interventional surgeries. 展开更多
关键词 Thoracoabdominal CT image registration large deformation fine structure multi-scale attention mechanism
原文传递
“Representation”的基本语义与中译名辨析
16
作者 周建增 《文艺理论研究》 北大核心 2025年第2期55-67,141,共14页
“Representation”概念具有一个由多民族语言构成的词汇谱系。此一谱系的语义内核为替代,兼涉自我与他者,展现出一种在场的摇摆特性。以此观之,“再现”虽具备他者指涉内涵,却往往被视为模仿的另一种表述;再现还被用以翻译“reproduct... “Representation”概念具有一个由多民族语言构成的词汇谱系。此一谱系的语义内核为替代,兼涉自我与他者,展现出一种在场的摇摆特性。以此观之,“再现”虽具备他者指涉内涵,却往往被视为模仿的另一种表述;再现还被用以翻译“reproduction”,后者也是模仿的代名词。“表征”尽管突破了模仿的思路,试图涵盖“representation”的自我和他者面向;但是其古代汉语内涵和当代科技中文运用与“representation”原义不相凿枘。“表象”自古具有象征、代表和表示之义,能够涵盖“representation”的客体化和动作化意味。现代汉语翻译实践印证了这一点。所以,与再现、表征相比,表象更适合成为“representation”的主要中译名。将“representation”中译名拟定为表象,能够更好地释放出这一概念自身的理论潜能,以及它与中国文论的对话潜能。对“representation”概念进行语义学和中译名考察,乃尝试以还原、释义和正名之法,探讨异域概念的合适的汉语表达方式,进而寻求中西方文论对话、汇通的可能性。 展开更多
关键词 替代 再现 模仿 表征 表象
在线阅读 下载PDF
A review on multi-scale structure engineering of carbon-based electrode materials towards dense energy storage for supercapacitors
17
作者 Dongyang Wu Fei Sun +5 位作者 Min Xie Hua Wang Wei Fan Jihui Gao Guangbo Zhao Shaoqin Liu 《Journal of Energy Chemistry》 2025年第3期768-799,共32页
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect... Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials. 展开更多
关键词 SUPERCAPACITORS Carbon-based electrodes Volumetric performances multi-scale structure Dense energy storage
在线阅读 下载PDF
Multi-scale dispersion strengthening for high-temperature titanium alloys: Strength preservation and softening mechanisms
18
作者 Xin Chen Lujun Huang +3 位作者 Shuo Ma Fengbo Sun Shuai Wang Lin Geng 《Journal of Materials Science & Technology》 2025年第3期1-14,共14页
The long-lasting expectation“the hotter the engine,the better”calls for the development of high-temperature metallic alloys.Although the high specific strengths of titanium alloys are compelling for such application... The long-lasting expectation“the hotter the engine,the better”calls for the development of high-temperature metallic alloys.Although the high specific strengths of titanium alloys are compelling for such applications,their deleterious softening beyond 600℃ imposes serious limitations.Much has been known for decades regarding the phase metallurgy for precipitation strengthening design in titanium alloys,however,the other facile strength promotion mechanism,dispersion strengthening,remains comparatively less-explored and unutilized.The present research concerns the multi-scale dispersion strengthening in titanium alloys,with mechanistic emphases on the critical plasticity micro-events that affect strength preservation.Due to the simultaneous introduction of intragranular dispersoids and intergranular reinforcers,the current titanium alloys present superior engineering tensile strength of 519 MPa at 700℃.Throughout the examined 25-800℃ temperature range,noticeable softening induced by the thermal activation occurs above 600℃,accompanied by evident strength loss.The temperature-dependence transition of dominated softening mechanisms from dynamic recovery to dynamic recrystallization has been clarified by theoretical calculations.Furthermore,the strengthening effect of multi-scale architectures is underpinned as the enhanced dislocation strengthening owing to the introduction of thermally-stable heterointerfaces,which could generically guide the design of similar heat-resistant titanium alloys. 展开更多
关键词 Titanium-based alloys multi-scale architectures Mechanical properties Temperature dependence Dislocation strengthening
原文传递
An adaptive representational account of predictive processing in human cognition
19
作者 Zhichao Gong Yidong Wei 《Cultures of Science》 2025年第1期3-11,共9页
As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science rese... As a new research direction in contemporary cognitive science,predictive processing surpasses traditional computational representation and embodied cognition and has emerged as a new paradigm in cognitive science research.The predictive processing theory advocates that the brain is a hierarchical predictive model based on Bayesian inference,and its purpose is to minimize the difference between the predicted world and the actual world,so as to minimize the prediction error.Predictive processing is therefore essentially a context-dependent model representation,an adaptive representational system designed to achieve its cognitive goals through the minimization of prediction error. 展开更多
关键词 Predictive processing Bayesian inference adaptive representation
在线阅读 下载PDF
Integrating ecosystem services into comprehensive land consolidation:A multi-scale governance perspective
20
作者 YAN Jinlong LIU Yongqiang LONG Hualou 《Journal of Geographical Sciences》 2025年第4期716-744,共29页
The application of ecosystem services(ES)theories in land consolidation is a confusing issue that has long plagued scholars and government officials.As the upgraded version of traditional land consolidation,comprehens... The application of ecosystem services(ES)theories in land consolidation is a confusing issue that has long plagued scholars and government officials.As the upgraded version of traditional land consolidation,comprehensive land consolidation(CLC)emphasizes ecological benefits,but it does not achieve the expected effect during the pilot phase.This study first proposed a theoretical analysis framework based on ES knowledge to answer the three key questions of why,where,and how to implement CLC better.Taking mountainous counties as the study area,we found that ES trade-offs/synergies,bundles,and drivers were significantly affected by scale effects.ES knowledge can play a crucial role in designing multi-scale CLC strategies regarding the objective,zoning,intensity,and mode.Specifically,mitigating the significant trade-offs between recreational opportunities,food production,and other ES is the top priority of CLC.Land consolidation zoning based on the ES bundles analysis is more rational and can provide the scientific premise for designing locally adapted CLC measures.Land consolidation can be classified into high-intensity direct intervention and low-intensity indirect intervention modes,based on the major drivers of ES.These findings help narrow the gap between ES and CLC practices. 展开更多
关键词 comprehensive land consolidation ecosystem services scale effect multi-scale governance land consolidation zoning
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部