期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
A New method for selecting multi-scale road network objects 被引量:1
1
作者 Wang Yanhui 《High Technology Letters》 EI CAS 2011年第4期407-413,共7页
Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is propose... Aimed at solving the problems of road network object selection at any unknown scale, the existing methods on object selection are integrated and extended in this paper, and a new object interpolation method is proposed, which reflects the inheritable and transferable characteristics of related information among multi-scale representation objects, and takes the attribute effects into account. Then the basic idea, the overall framework and the technical flow of the interpolation are put forward, at the samet:me synthetical weight function of the interpolation method is defined and described. The method and technical strategies of object selection are extended, and the key problems are solved, including the dejign of the objective quantitative and structural selections based on the weight values, the interpolation experiment strategies and technical flows, the result of the test shows that the object interpolation method not only inherits the objects at smaller scales, but also takes the attribute effect into account when deriving objects from larger scales according to the road importance, which is a guarantee to objective selection of the road objects at middle scales. 展开更多
关键词 multi-scale representation object interpolation object selection synthetic weight
在线阅读 下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
2
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 object detection YOLOv8 multi-scale attention mechanism dynamic detection head
在线阅读 下载PDF
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View
3
作者 Xiangyan Tang Chengchun Ruan +2 位作者 Xiulai Li Binbin Li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
在线阅读 下载PDF
METHOD OF CENTERS ALGORITHM FORMULTI-OBJECTIVE PROGRAMMING PROBLEMS
4
作者 Tarek Emam 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1128-1142,共15页
In this paper, we consider a method of centers for solving multi-objective programming problems, where the objective functions involved are concave functions and the set of feasible points is convex. The algorithm is ... In this paper, we consider a method of centers for solving multi-objective programming problems, where the objective functions involved are concave functions and the set of feasible points is convex. The algorithm is defined so that the sub-problems that must be solved during its execution may be solved by finite-step procedures. Conditions are given under which the algorithm generates sequences of feasible points and constraint multiplier vectors that have accumulation points satisfying the KKT conditions. Finally, we establish convergence of the proposed method of centers algorithm for solving multiobjective programming problems. 展开更多
关键词 method of centers MULTI-objective CONVERGENCE approximated efficient solution
在线阅读 下载PDF
Hybrid receptive field network for small object detection on drone view 被引量:1
5
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation multi-scale object detection
原文传递
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
6
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect Real-time detection Salient object detection Dual-branch decoder multi-scale attention fusion multi-scale residual fusion
原文传递
Coupling the Power of YOLOv9 with Transformer for Small Object Detection in Remote-Sensing Images
7
作者 Mohammad Barr 《Computer Modeling in Engineering & Sciences》 2025年第4期593-616,共24页
Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presen... Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presence of closely packed objects in these images hinder accurate detection.Additionally,the motion blur effect further complicates the identification of such objects.To address these issues,we propose enhanced YOLOv9 with a transformer head(YOLOv9-TH).The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms.We further improve YOLOv9-TH using several strategies,including data augmentation,multi-scale testing,multi-model integration,and the introduction of an additional classifier.The cross-stage partial(CSP)method and the ghost convolution hierarchical graph(GCHG)are combined to improve detection accuracy by better utilizing feature maps,widening the receptive field,and precisely extracting multi-scale objects.Additionally,we incorporate the E-SimAM attention mechanism to address low-resolution feature loss.Extensive experiments on the VisDrone2021 and DIOR datasets demonstrate the effectiveness of YOLOv9-TH,showing good improvement in mAP compared to the best existing methods.The YOLOv9-TH-e achieved 54.2% of mAP50 on the VisDrone2021 dataset and 92.3% of mAP on the DIOR dataset.The results confirmthemodel’s robustness and suitability for real-world applications,particularly for small object detection in remote sensing images. 展开更多
关键词 Remote sensing images YOLOv9-TH multi-scale object detection transformer heads VisDrone2021 dataset
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
8
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
9
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
在线阅读 下载PDF
某园林工程挖掘机驾驶室轻量化设计
10
作者 洪婷婷 冯辰 朱立源 《机械设计与制造》 北大核心 2025年第5期290-293,300,共5页
挖掘机驾驶室是保护驾驶员生命安全的重要机构,其轻量化设计的前提是必须满足对驾驶员的安全保护,因此,论文首先通过有限元仿真对驾驶室的侧翻与落物保护机构(ROPS&FOPS)的安全性能进行了模拟,利用安全性能测试验证该模型的有效性... 挖掘机驾驶室是保护驾驶员生命安全的重要机构,其轻量化设计的前提是必须满足对驾驶员的安全保护,因此,论文首先通过有限元仿真对驾驶室的侧翻与落物保护机构(ROPS&FOPS)的安全性能进行了模拟,利用安全性能测试验证该模型的有效性。其次,对驾驶室的ROPS&FOPS结构进行试验设计,基于仿真结果建立了近似模型,并以驾驶室的ROPS&FOPS结构厚度为变量,最小质量和最大扭转刚度为目标进行多目标优化。结果表明,在满足安全性能的条件下,可以将驾驶室的质量减轻11.7%,轻量化效果显著,为驾驶室的轻量化设计研制提供了理论依据。 展开更多
关键词 驾驶室 安全性能 轻量化设计 近似模型 多目标优化
在线阅读 下载PDF
道路网中针对多目标决策的兴趣点高效查询算法
11
作者 李松 杨晓龙 +1 位作者 靳海鹏 张丽平 《西安交通大学学报》 北大核心 2025年第4期148-157,共10页
为了解决道路网中利用多目标决策技术进行兴趣点推荐和高效位置查询的问题,针对由于数据规模增加产生大量近似数据,导致传统多目标决策技术在道路网环境下查询效率和可用性方面较低的问题,提出了一种道路网广义近似Skyline查询算法。首... 为了解决道路网中利用多目标决策技术进行兴趣点推荐和高效位置查询的问题,针对由于数据规模增加产生大量近似数据,导致传统多目标决策技术在道路网环境下查询效率和可用性方面较低的问题,提出了一种道路网广义近似Skyline查询算法。首先基于兴趣点的维度相似性和道路网近似性构建近似集和独立点,并根据兴趣点特性设计相应的剪枝策略;随后,通过近似集和独立点重构数据集,根据剪枝策略过滤掉当查询位置移动时对查询结果无影响的兴趣点,并构建AA-R*-Tree索引以提升查询效率;最后,根据兴趣点的近似性提出一种广义近似聚集支配算法,通过选取代表点代替近似集进行Skyline计算,减少冗余运算并优化查询结果,最终得到满足兴趣点近似整合有序的Skyline结果集。实验结果表明:所提近似查询算法在大规模数据集和大量相似数据条件下表现出较好的效率与可行性;与Higher-Gsky、MG-EGsky和GSSK-A算法相比,所提算法在数据规模、查询范围及路段数增加时的平均效率提升约14%,能够为道路网用户提供更快速有效的决策支持。 展开更多
关键词 道路网 SKYLINE查询 多目标决策 近似查询 兴趣点推荐
在线阅读 下载PDF
双边磁场调制永磁直线电机推力特性优化设计
12
作者 缪仲翠 张磊 +2 位作者 苏乙 张慧 李燕 《电机与控制学报》 北大核心 2025年第2期146-159,共14页
针对永磁直线电机存在的推力波动大以及永磁体利用率低等问题,从结构设计方面着手,提出一种采用扇形Halbach交替极磁极结构的双边长次级磁场调制永磁直线电机(BLSMFMPMLM),并对其进行优化设计。首先,通过有限元法分析BLSMFMPMLM分别采用... 针对永磁直线电机存在的推力波动大以及永磁体利用率低等问题,从结构设计方面着手,提出一种采用扇形Halbach交替极磁极结构的双边长次级磁场调制永磁直线电机(BLSMFMPMLM),并对其进行优化设计。首先,通过有限元法分析BLSMFMPMLM分别采用3种不同Halbach磁极结构的气隙磁场谐波成分、平均推力和推力波动等电磁性能进行计算分析;其次,通过建立推力特性的解析模型和Taguchi法筛选出对推力特性影响较大的参数,利用组合近似模型(ES)结合多目标优化算法对关键参数进行优化以提高电机推力特性,获得多组Pareto最优解;最后,选取综合性能较优的解搭建仿真模型分析电机性能的改善效果和验证设计方法的实用性。结果表明:扇形Halbach交替极磁极结构永磁体利用率更高,具有实用价值;优化后的BLSMFMPMLM平均推力提升了26.82%,并其使得推力波动减小了24.66%,该研究为永磁直线电机的性能改善提供了有效方法。 展开更多
关键词 永磁直线电机 磁场调制 HALBACH阵列 交替极 推力特性 有限元 组合近似模型 多目标优化
在线阅读 下载PDF
基于多工况多目标的前副车架轻量化研究 被引量:1
13
作者 薛文帅 王天波 +2 位作者 魏民祥 吴江 罗肇艺 《机械设计与研究》 北大核心 2025年第2期139-144,162,共7页
副车架作为汽车的重要组成部分,直接影响整车性能。由于汽车实际运行工况复杂,为避免研究工况单一性,同时考虑强度、模态等性能要求,结合多工况拓扑优化和多目标优化方法开展副车架轻量化设计。为准确分析典型工况下副车架受载情况,建... 副车架作为汽车的重要组成部分,直接影响整车性能。由于汽车实际运行工况复杂,为避免研究工况单一性,同时考虑强度、模态等性能要求,结合多工况拓扑优化和多目标优化方法开展副车架轻量化设计。为准确分析典型工况下副车架受载情况,建立前悬架刚柔耦合多体动力学模型,对原副车架进行动态和静态性能分析确定优化余量。定义典型工况的优化权重系数,结合折衷规划法构建多工况拓扑优化数学模型。针对传统副车架的结构优化往往依赖于工程师经验问题,采用变密度方法进行多工况拓扑优化,随后基于优化结果中的材料分布路径设计副车架参数模型。通过试验设计采集样本点,构建响应面近似模型(RSM)。采用邻域培植算法(NCGA)对副车架参数模型进行优化,设计变量为梁厚度,目标为最小质量和最大一阶频率,约束为一阶频率下限和应力值上限。结果表明:优化后的前副车架在保证结构性能的前提下,一阶非刚体模态提升3 Hz,重量降低了3.21 kg,轻量化率达11.7%,为其他相关产品结构设计提供参考。 展开更多
关键词 多工况多目标拓扑优化 前副车架 试验设计 响应面近似模型
原文传递
考虑可靠性的电驱动桥桥壳轻量化设计 被引量:1
14
作者 李冬琦 高志彬 《机械传动》 北大核心 2025年第10期53-61,共9页
【目的】为解决电驱动桥桥壳的轻量化问题,提出一种基于近似模型和组合优化算法的轻量化设计方法,并引入6σ可靠性优化理论,以提升桥壳的稳定性。【方法】首先,通过灵敏度分析,选取对桥壳性能影响较大的结构参数作为设计变量;其次,根据... 【目的】为解决电驱动桥桥壳的轻量化问题,提出一种基于近似模型和组合优化算法的轻量化设计方法,并引入6σ可靠性优化理论,以提升桥壳的稳定性。【方法】首先,通过灵敏度分析,选取对桥壳性能影响较大的结构参数作为设计变量;其次,根据试验设计数据构建了桥壳的径向基函数(Radial Basis Function,RBF)神经网络近似模型,运用第二代非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ)和非线性序列二次规划(Non-Linear Programming by Quadratic Lagrangian,NLPQL)算法相结合的组合算法进行了确定性多目标优化;最后,考虑不确定性因素对桥壳性能的影响,引入6σ可靠性分析理论,基于RBF神经网络近似模型进行了桥壳的可靠性优化设计。【结果】结果表明,优化设计后,在桥壳性能变化不大的情况下,质量减轻6.9%;同时,桥壳各性能的可靠性提高,各参数均达到6σ水平。 展开更多
关键词 电驱动桥桥壳 轻量化设计 多目标优化 近似模型 组合算法
在线阅读 下载PDF
变轨距机车悬挂参数多目标优化研究
15
作者 邢晓曦 徐彬倢 +2 位作者 冉祥瑞 张洪军 王开云 《铁道机车车辆》 北大核心 2025年第3期88-95,共8页
合理优化悬挂参数以提高变轨距机车的动力学性能,建立变轨距机车动力学仿真模型,分析其在不同轨距下的直线运行平稳性和曲线通过性能,基于Simpack-Isight联合仿真平台构建变轨距机车近似模型,并采用NSGA-Ⅱ算法对转向架9个悬挂参数进行... 合理优化悬挂参数以提高变轨距机车的动力学性能,建立变轨距机车动力学仿真模型,分析其在不同轨距下的直线运行平稳性和曲线通过性能,基于Simpack-Isight联合仿真平台构建变轨距机车近似模型,并采用NSGA-Ⅱ算法对转向架9个悬挂参数进行多目标寻优计算。结果表明:变轨距车辆在1520 mm轨距上运行的动力学性能整体要劣于1435 mm轨距条件下的性能;经参数优化后变轨距机车动力学性能得到明显改善,其中横向平稳性指标优化效果最显著,优化率为15.27%。 展开更多
关键词 变轨距机车 悬挂参数 最优拉丁超立方 近似模型 多目标优化
在线阅读 下载PDF
自表示显著性物体检测模型矩阵优化问题的迭代算法
16
作者 黄威铭 段雪峰 《工程数学学报》 北大核心 2025年第5期974-982,共9页
为了提高图像显著性物体检测的准确度,分辨率与计算效率,利用图像背景空间与图像空间之间的关系,结合Schatten-p范数和l2,1范数构造了新的显著性物体检测模型。与基于核范数的低秩逼近的传统显著性物体检测模型相比,新模型考虑了图像特... 为了提高图像显著性物体检测的准确度,分辨率与计算效率,利用图像背景空间与图像空间之间的关系,结合Schatten-p范数和l2,1范数构造了新的显著性物体检测模型。与基于核范数的低秩逼近的传统显著性物体检测模型相比,新模型考虑了图像特征空间与背景空间之间的关系,并且Schatten-p范数相对于核范数,在数值比例上能更好地逼近低秩函数。针对新模型的矩阵优化问题,设计不动点迭代算法对模型进行求解,在4个显著性物体检测模型的标准数据集进行可行性验证,并和4种常用的算法进行对比实验,实验结果验证了该算法具有较高的计算效率和准确度。 展开更多
关键词 显著性物体检测 低秩逼近 Schatten-p范数 l2 1范数 不动点迭代
在线阅读 下载PDF
非凸多目标优化问题的凸上逼近方法
17
作者 霍紫燕 唐莉萍 《重庆师范大学学报(自然科学版)》 北大核心 2025年第2期68-77,共10页
提出一种求解非凸多目标优化问题的凸上逼近方法。首先,通过ε-约束法将多目标优化问题转化为单目标优化问题;其次,利用一类凸上估计函数对非凸约束函数进行逼近,构造一系列凸松弛子问题,设计了序列参数凸逼近算法;然后,在适当的条件下... 提出一种求解非凸多目标优化问题的凸上逼近方法。首先,通过ε-约束法将多目标优化问题转化为单目标优化问题;其次,利用一类凸上估计函数对非凸约束函数进行逼近,构造一系列凸松弛子问题,设计了序列参数凸逼近算法;然后,在适当的条件下,证明算法产生的迭代序列收敛到原多目标优化问题的KKT点;最后,通过数值实验来验证算法的可行性。 展开更多
关键词 非凸多目标优化 凸上逼近方法 凸上估计函数 KKT点
原文传递
基于两阶段优化的农作物种植策略分析
18
作者 唐沈逸 王文杰 +1 位作者 张琥 蒋贵荣 《智慧农业导刊》 2025年第5期68-74,79,共8页
为优化农作物种植策略,助力乡村振兴,该文构建一个多目标规划模型,旨在最大化预期利润、优化田间管理与生产效率以及改进种植方式。该模型采用两阶段优化法进行求解。在此基础上,考虑到种植和市场的不确定性因素,运用样本平均近似法和... 为优化农作物种植策略,助力乡村振兴,该文构建一个多目标规划模型,旨在最大化预期利润、优化田间管理与生产效率以及改进种植方式。该模型采用两阶段优化法进行求解。在此基础上,考虑到种植和市场的不确定性因素,运用样本平均近似法和熵权法-TOPSIS法,以在利润和风险之间寻求平衡。研究结果表明,该模型不仅能够在实现利润最大化的同时提升种植效率和优化种植方式,还能在面临市场风险时保持较高的利润稳定性,为乡村农作物种植规划提供有效的理论支持和决策参考。 展开更多
关键词 农作物种植策略 多目标规划 两阶段优化法 样本平均近似法 熵权法-TOPSIS法
在线阅读 下载PDF
基于组合近似模型和IPSO-GA的全焊接球阀焊接工艺参数优化研究
19
作者 吴胜 刘惺 +2 位作者 姚有丽 梅静 曾献勇 《黑龙江科学》 2025年第14期32-37,共6页
针对全焊接球阀焊后残余应力大、焊接传导至阀座的温度过高影响密封性能等问题,利用ABAQUS结合python二次开发,模拟其焊接特性,通过分析全焊接球阀的焊接结构确定了焊接关键参数。对全焊接球阀进行参数化建模,通过拉丁超立方抽样进行试... 针对全焊接球阀焊后残余应力大、焊接传导至阀座的温度过高影响密封性能等问题,利用ABAQUS结合python二次开发,模拟其焊接特性,通过分析全焊接球阀的焊接结构确定了焊接关键参数。对全焊接球阀进行参数化建模,通过拉丁超立方抽样进行试验设计并计算球阀的真实响应值,构建了球阀焊接参数的组合近似模型并通过了精度校验,采用修正后的粒子群算法对组合近似模型进行多目标寻优,得到最优焊接参数。结果表明,采用组合近似模型结合IPSO-GA算法在参数优化方面表现出较好的适应性,优化参数的球阀焊后残余应力分布、变形较原参数一致,但焊后残余应力、最大变形、阀座最高温度分别下降15.1%、9.8%和14.9%,各项参数指标均符合球阀工艺要求。 展开更多
关键词 全焊接球阀焊 焊接参数 多目标优化 组合近似模型
在线阅读 下载PDF
基于改进多目标灰狼算法的滚齿加工参数优化分析 被引量:1
20
作者 邓杨 《机械管理开发》 2025年第4期146-147,150,共3页
为了进一步优化高速滚齿多目标参数,设计了一种以改进多目标灰狼(MOGW)方法。选择YKS3112CNC7型高速滚齿机对小模数齿轮进行加工测试,通过算法迭代得到的参数解集,并进行标与参数间关联分析。研究结果表明:为了使加工能量最小,实现最优... 为了进一步优化高速滚齿多目标参数,设计了一种以改进多目标灰狼(MOGW)方法。选择YKS3112CNC7型高速滚齿机对小模数齿轮进行加工测试,通过算法迭代得到的参数解集,并进行标与参数间关联分析。研究结果表明:为了使加工能量最小,实现最优节能效果,需要将实际加工过程中能量变化都考虑进去,对参数优化发现评分值均小于0.05以内,表现出来很高的稳定性。相比较传统算法,该算法加工能耗减小了15.58%,表现出较优的节能效果。 展开更多
关键词 高速滚齿 灰狼优化算法 逼近理想解排序 多目标优化
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部