期刊文献+
共找到908,036篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-scale modeling of the multi-phase flow in water electrolyzers for green hydrogen production
1
作者 Lizhen Wu Qing Wang +2 位作者 Wenzhi Li Mingcong Tang Liang An 《Materials Reports(Energy)》 2025年第3期40-49,共10页
Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This... Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production. 展开更多
关键词 Water electrolyzers Bubble dynamics multi-scale MULTI-PHASE modeling
在线阅读 下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process 被引量:1
2
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites Finite element analyses multi-scale modeling Thermal conductivity
在线阅读 下载PDF
Multi-scale modeling for prediction of mechanical performance in brazed GH99 thin-walled structure
3
作者 Yazhou LIU Shengpeng HU +4 位作者 Yanyu SONG Wei FU Xiaoguo SONG Ning GUO Weimin LONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期550-563,共14页
Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the eff... Superalloy thin-walled structures are achieved mainly by brazing,but the deformation process of brazed joints is non-uniform,making it a challenging research task.This paper records a thorough investigation of the effect of brazing parameters on the microstructure of joints and its mechanical properties,which mainly inquires into the deformation and fracture mechanisms in the shearing process of GH99/BNi-5a/GH99 joints.The macroscopic-microscopic deformation mechanism of the brazing interface during shearing was studied by Crystal Plasticity(CP)and Molecular Dynamics(MD)on the basis of the optimal brazing parameters.The experimental results show that the brazing interface is mainly formed by(Ni,Cr,Co)(s,s)and possesses a shear strength of approximately 546 MPa.The shearing fracture of the brazed joint occurs along the brazing seam,displaying the characteristics of intergranular fracture.MD simulations show that dislocations disassociate and transform into fine twinning with increased strain.CP simulated the shear deformation process of the brazed joint.The multiscale simulation results are consistent with the experimental results.The mechanical properties of thin-walled materials for brazing are predicted using MD and CP methods. 展开更多
关键词 multi-scale modeling BRAZING Shear mechanisms Crystal plasticity GH99 superalloy
原文传递
Multi-scale modeling of hemodynamics in the cardiovascular system 被引量:4
4
作者 Hao Liu Fuyou Liang +4 位作者 Jasmin Wong Takashi Fujiwara Wenjing Ye Ken-iti Tsubota Michiko Sugawara 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期446-464,共19页
The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling... The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale model- ing of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arter- ial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applica- tions, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynarnic modeling. 展开更多
关键词 multi-scale modeling. Macro-hemodynamics.Micro-hemodynamics Cardiovascular system ENDOTHELIALCELL
暂未订购
Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting 被引量:9
5
作者 Xuewei Yan Qjngyan Xu +3 位作者 Guoqiang Tian Quanwei Liu Junxing Hou Baicheng Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第8期36-49,共14页
Liquid-metal cooling(LMC)process can offer refinement of microstructure and reduce defects due to the increased cooling rate from enhanced heat extraction,and thus an understanding of solidification behavior in nickel... Liquid-metal cooling(LMC)process can offer refinement of microstructure and reduce defects due to the increased cooling rate from enhanced heat extraction,and thus an understanding of solidification behavior in nickel-based superalloy casting during LMC process is essential for improving mechanical performance of single crystal(SC)castings.In this effort,an integrated heat transfer model coupling meso grain structure and micro dendrite is developed to predict the temperature distribution and microstructure evolution in LMC process.An interpolation algorithm is used to deal with the macro-micro grids coupling issues.The algorithm of cells capture is also modified,and a deterministic cellular automaton(DCA)model is proposed to describe neighborhood cell tracking.In addition,solute distribution is also considered to describe the dendrite growth.Temperature measuring,EBSD,OM and SEM experiments are implemented to verify the proposed model,and the experiment results agree well with the simulation results.Several simulations are performed with a range of withdrawal rates,and the results indicate that 12 mm·min^(-1)is suitable for LMC process in this work,which can result in a fairly narrow and flat mushy zone and correspondingly exhibited fairly straight grains.The mushy zone length is about 4.8 mm in the steady state and the average deviation angle of grains is about 13.9°at the height 90 mm from the casting base under 12 mm·min^(-1)withdrawal process.The competitive phenomenon of dendrites at different withdrawal rates is also observed,which has a great relevant to the temperature fluctuation. 展开更多
关键词 multi-scale model Numerical simulation Liquid-metal cooling Microstructure
原文传递
Multi-scale Modeling of the Effective Chloride Ion Diffusion Coefficient in Cement-based Composite Materials 被引量:1
6
作者 孙国文 孙伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期364-373,共10页
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the... N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself. For the convenience of applications, the mortar and concrete were considered as a four-phase spherical model, consisting of cement continuous phase, dispersed aggregates phase, interface transition zone and their homogenized effective medium phase. A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure. During calculation, the tortuosity (n) and constrictivity factors (Ds/Do) of pore in the hardened pastes are n^3.2, Ds/Do=l.Ox 10-4 respectively from the test data. The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete. 展开更多
关键词 multiscale chloride diffusion coefficient cement-based composite materials generaleffective medium theory composite spheres model MICROSTRUCTURE
原文传递
Effects of particle size on the triboelectrification phenomenon in pharmaceutical excipients:Experiments and multi-scale modeling 被引量:1
7
作者 Raj Mukherjee Vipul Gupta +4 位作者 Shivangi Naik Saurabh Sarkar Vinit Sharma Prasad Peri Bodhisattwa Chaudhuri 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2016年第5期603-617,共15页
Particle sizes play a major role to mediate charge transfer, both between identical and different material surfaces. The study probes into the probable mechanism that actuates opposite polarities between two different... Particle sizes play a major role to mediate charge transfer, both between identical and different material surfaces. The study probes into the probable mechanism that actuates opposite polarities between two different size fractions of the same material by analyzing the charge transfer patterns of two different sizes of microcrystalline cellulose(MCC). Quantum scale calculations confirmed alteration of charge transfer capacities due to variation of moisture content predicted by multiple surface and bulk analytical techniques. Discrete Element Method(DEM) based multi-scale computational models pertinent to predict charge transfer capacities were further implemented, and the results were in accordance to the experimental charge profiles. 展开更多
关键词 TRIBOCHARGING WORK function EXCIPIENT DISCRETE ELEMENT modeling
在线阅读 下载PDF
Research on Multi-Scale Modeling of Grid-Connected Distributed Photovoltaic Power Generation
8
作者 Chen Lv Wanxing Sheng +1 位作者 Keyan Liu Xinzhou Dong 《Energy and Power Engineering》 2017年第4期127-140,共14页
The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key... The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key factor of the simulation accuracy in the specific operating scenarios of distribution network. In this paper, a multi-scale model of grid connected PV distributed generation system is proposed based on the mathematical model of grid-connected distributed PV power generation. It is analyzed that differences of simulation performance, such as adaptability of simulation step size, accuracy of output and the effect on voltage profile of distribution network, between PV models with different scales in IEEE 33 node example. Simulation results indicate that the multi-scale model is effective in improving the accuracy and efficiency of simulation under different operating conditions of distribution network. 展开更多
关键词 PV DISTRIBUTED Generation multi-scale modeling Simulation STEP Size OUTPUT Power VOLTAGE Profile
在线阅读 下载PDF
Multi-Level, Multi-Scale Modeling and Predictive Mapping for Jaguars in the Brazilian Pantanal
9
作者 Eve Bohnett Dave Hulse +1 位作者 Bilal Ahmad Thomas Hoctor 《Open Journal of Ecology》 2020年第5期243-263,共21页
Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales... Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales and temporal movement levels were run within several analytical modeling frameworks for comparison. Included in the analysis were multi-scale raster grains (30 m, 90 m, 180 m, 360 m, 720 m, 1440 m) and GPS collaring temporal movement levels (point, path, and step). Various analytical methods were used for comparison of models that could accommodate data structural levels (group, individual, case-control). Models compared included conditional logistic regression, generalized additive modeling (GAM), and classification regression trees, such as random forests (RF) and gradient boosted regression tree (GBM). The goals of the study were to discuss the potential and limitations for machine learning methods using GPS collaring data to produce predictive habitat suitability mapping using the various scales and levels available. Results indicated that choosing the appropriate temporal level and raster scale improved model outputs. Overall, larger level analytical modeling frameworks and those that used multi-scale raster grains showed the best model evaluation with the inherent condition that they predict a broader scale and subset of data. The identification of the appropriate spatial scale, temporal scale and statistical model need careful consideration in predictive mapping efforts. 展开更多
关键词 Machine Learning Movement Ecology HABITAT SELECTION Resource SELECTION MULTIPLE Levels MULTIPLE Scales PREDICTIVE models Gradient Boosting Method Random Forest
在线阅读 下载PDF
Multi-scale modeling in microstructure evolution of materials
10
作者 宗亚平 郭巍 +1 位作者 王刚 张芳 《广东有色金属学报》 2005年第2期117-123,共7页
Intelligent design and control of the microstructure to tailor properties of materials is the dream that materials scientists have been worked hard for many years. Formation of research area of computational materials... Intelligent design and control of the microstructure to tailor properties of materials is the dream that materials scientists have been worked hard for many years. Formation of research area of computational materials science paves the way to realize the dream. Simulation of microstructure evolution is a chief branch of the computational materials science and has caused great attention from materials researchers. Multi-scale modeling gets popular just within 5-6 years recently due to huge research works to try to shorten the distance between simulation and application. People have to command one or more classical simulation methods in order to do the multi-scale modeling so chief simulation methods will be discussed first and then more reviews in detail are given to the phase field simulation. The main part of the paper is carried out to introduce two key approaches to do the multi-scale modeling job. It is suggested that extension of the multiscale modeling is necessary to study the technologies to link microstructure simulation, processing simulation and property simulation each other as well as to build bridges between different simulation methods and between analytical models and numerical models. 展开更多
关键词 金属材料 显微结构 相场 数值模型
在线阅读 下载PDF
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
11
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 multi-scale feature fusion Soft sensors Stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
Mechanical response of a tunnel subjected to strike-slip faulting processes,based on a multi-scale modeling method
12
作者 Guoguo LIU Ping GENG +3 位作者 Tianqiang WANG Xiangyu GUO Jiaxiang WANG Ti DING 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第8期1281-1295,共15页
The stick-slip action of strike-slip faults poses a significant threat to the safety and stability of underground structures.In this study,the north-east area of the Longmenshan fault,Sichuan,provides the geological b... The stick-slip action of strike-slip faults poses a significant threat to the safety and stability of underground structures.In this study,the north-east area of the Longmenshan fault,Sichuan,provides the geological background;the rheological characteristics of the crustal lithosphere and the nonlinear interactions between plates are described by Burger’s viscoelastic constitutive model and the friction constitutive model,respectively.A large-scale global numerical model for plate squeezing analysis is established,and the seemingly periodic stick-slip action of faults at different crust depths is simulated.For a second model at a smaller scale,a local finite element model(sub-model),the time history of displacement at a ground level location on the Longmenshan fault plane in a stick-slip action is considered as the displacement loading.The integration of these models,creating a multi-scale modeling method,is used to evaluate the crack propagation and mechanical response of a tunnel subjected to strike-slip faulting.The determinations of the recurrence interval of stick-slip action and the cracking characteristics of the tunnel are in substantial agreement with the previous field investigation and experimental results,validating the multi-scale modeling method.It can be concluded that,regardless of stratum stiffness,initial cracks first occur at the inverted arch of the tunnel in the footwall,on the squeezed side under strike-slip faulting.The smaller the stratum stiffness is,the smaller the included angle between the crack expansion and longitudinal direction of the tunnel,and the more extensive the crack expansion range.For the tunnel in a high stiffness stratum,both shear and bending failures occur on the lining under strike-slip faulting,while for that in the low stiffness stratum,only bending failure occurs on the lining. 展开更多
关键词 stick-slip action plate squeezing analysis multi-scale modeling method lining cracking mechanical response
原文传递
A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking:A Tool for Exploring the Impact of Changing Climate on Mid-to-High Latitude Weather Extremes 被引量:1
13
作者 Dehai LUO Wenqi ZHANG Binhe LUO 《Advances in Atmospheric Sciences》 2025年第10期2018-2035,共18页
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and... A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread. 展开更多
关键词 nonlinear Schrödinger equation nonlinear multi-scale interaction model of atmospheric blocking meridional background potential vorticity gradient climate change mid-to-high latitude weather extremes
在线阅读 下载PDF
A multi-scale and multi-mechanism coupled model for carbon isotope fractionation of methane during shale gas production 被引量:1
14
作者 Jun Wang Fang-Wen Chen +4 位作者 Wen-Biao Li Shuang-Fang Lu Sheng-Xian Zhao Yong-Yang Liu Zi-Yi Wang 《Petroleum Science》 2025年第7期2719-2746,共28页
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho... Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies. 展开更多
关键词 Shale gas Isotope fractionation multi-scale Production prediction Adsorbed/free gas ratio
原文传递
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
15
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
MSFResNet:A ResNeXt50 model based on multi-scale feature fusion for wild mushroom identification
16
作者 YANG Yang JU Tao +1 位作者 YANG Wenjie ZHAO Yuyang 《Journal of Measurement Science and Instrumentation》 2025年第1期66-74,共9页
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo... To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification. 展开更多
关键词 multi-scale feature fusion attention mechanism ResNeXt50 wild mushroom identification deep learning
在线阅读 下载PDF
Multi-source data integration and multi-scale modeling framework for progressive prediction of complex geological interfaces in tunneling 被引量:5
17
作者 Jingxiao Wang Peinan Li +3 位作者 Xiaoying Zhuang Xiaojun Li Xi Jiang Jun Wu 《Underground Space》 SCIE EI CSCD 2024年第2期1-25,共25页
A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction.However,regional models based on limited survey data represent macroscopic geological environments but ... A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction.However,regional models based on limited survey data represent macroscopic geological environments but not detailed internal geological characteristics,especially at tunnel portals with complex geological conditions.This paper presents a comprehensive methodological framework for refined modeling of the tunnel surrounding rock and subsequent mechanics analysis,with a particular focus on natural space distortion of hard-soft rock interfaces at tunnel portals.The progressive prediction of geological structures is developed considering multi-source data derived from the tunnel survey and excavation stages.To improve the accuracy of the models,a novel modeling method is proposed to integrate multi-source and multi-scale data based on data extraction and potential field interpolation.Finally,a regional-scale model and an engineering-scale model are built,providing a clear insight into geological phenomena and supporting numerical calculation.In addition,the proposed framework is applied to a case study,the Long-tou mountain tunnel project in Guangzhou,China,where the dominant rock type is granite.The results show that the data integration and modeling methods effectively improve model structure refinement.The improved model’s calculation deviation is reduced by about 10%to 20%in the mechanical analysis.This study contributes to revealing the complex geological environment with singular interfaces and promoting the safety and performance of mountain tunneling. 展开更多
关键词 Mountain tunnel Geological modeling Multi-source data Progressive prediction Tunnel portals
在线阅读 下载PDF
A medical image segmentation model based on SAM with an integrated local multi-scale feature encoder
18
作者 DI Jing ZHU Yunlong LIANG Chan 《Journal of Measurement Science and Instrumentation》 2025年第3期359-370,共12页
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ... Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis. 展开更多
关键词 segment anything model(SAM) medical image segmentation ENCODER decoder multiaxial Hadamard product module(MHPM) cross-branch balancing adapter
在线阅读 下载PDF
The Multi-Scale Numerical Modeling System for Research on the Relationship between Urban Planning and Meteorological Environment 被引量:37
19
作者 房小怡 蒋维楣 +7 位作者 苗世光 张宁 徐敏 季崇萍 陈鲜艳 魏建民 王志华 王晓云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期103-112,共10页
Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban sca... Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban scale, urban sub-domain scale, and single to few buildings scale. In it, different underlying surface types are employed, the building drag factor is used to replace its roughness in the influence on the urban wind field, the effects of building distribution, azimuth and screening of shortwave radiation are added, and the influence of anthropogenic heating is also taken into account. All the numerical tests indicate that the simulated results are reasonably in agreement with the observational data, so the system can be used to simulate the urban meteorological environment. Making use of it, the characteristics of the meteorological environment from the urban to urban sub-domain scales, even the among-buildings scale, can be recognized. As long as the urban planning scheme is given, the corresponding simulated results can be obtained so as to meet the need of optimizing urban planning. 展开更多
关键词 developing planning in an urban area meteorological environment multi-scale modeling urban planning urban environment
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
20
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部