The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualiz...This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualization enhancement.However,fine structure registration of complex thoracoabdominal organs and large deformation registration caused by respiratory motion is challenging.To deal with this problem,we propose a 3D multi-scale attention VoxelMorph(MAVoxelMorph)registration network.To alleviate the large deformation problem,a multi-scale axial attention mechanism is utilized by using a residual dilated pyramid pooling for multi-scale feature extraction,and position-aware axial attention for long-distance dependencies between pixels capture.To further improve the large deformation and fine structure registration results,a multi-scale context channel attention mechanism is employed utilizing content information via adjacent encoding layers.Our method was evaluated on four public lung datasets(DIR-Lab dataset,Creatis dataset,Learn2Reg dataset,OASIS dataset)and a local dataset.Results proved that the proposed method achieved better registration performance than current state-of-the-art methods,especially in handling the registration of large deformations and fine structures.It also proved to be fast in 3D image registration,using about 1.5 s,and faster than most methods.Qualitative and quantitative assessments proved that the proposed MA-VoxelMorph has the potential to realize precise and fast tumor localization in clinical interventional surgeries.展开更多
This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi...This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image...The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality.展开更多
Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert p...Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert performance.This survey reviews the principal model families as convolutional,recurrent,generative,reinforcement,autoencoder,and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation,classification,reconstruction,and anomaly detection.A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust,context-aware predictions.To support clinical adoption,we outline post-hoc explainability techniques(Grad-CAM,SHAP,LIME)and describe emerging intrinsically interpretable designs that expose decision logic to end users.Regulatory guidance from the U.S.FDA,the European Medicines Agency,and the EU AI Act is summarised,linking transparency and lifecycle-monitoring requirements to concrete development practices.Remaining challenges as data imbalance,computational cost,privacy constraints,and cross-domain generalization are discussed alongside promising solutions such as federated learning,uncertainty quantification,and lightweight 3-D architectures.The article therefore offers researchers,clinicians,and policymakers a concise,practice-oriented roadmap for deploying trustworthy deep-learning systems in healthcare.展开更多
Structural Health Monitoring(SHM)systems play a key role in managing buildings and infrastructure by delivering vital insights into their strength and structural integrity.There is a need for more efficient techniques...Structural Health Monitoring(SHM)systems play a key role in managing buildings and infrastructure by delivering vital insights into their strength and structural integrity.There is a need for more efficient techniques to detect defects,as traditional methods are often prone to human error,and this issue is also addressed through image processing(IP).In addition to IP,automated,accurate,and real-time detection of structural defects,such as cracks,corrosion,and material degradation that conventional inspection techniques may miss,is made possible by Artificial Intelligence(AI)technologies like Machine Learning(ML)and Deep Learning(DL).This review examines the integration of computer vision and AI techniques in Structural Health Monitoring(SHM),investigating their effectiveness in detecting various forms of structural deterioration.Also,it evaluates ML and DL models in SHM for their accuracy in identifying and assessing structural damage,ultimately enhancing safety,durability,and maintenance practices in the field.Key findings reveal that AI-powered approaches,especially those utilizing IP and DL models like CNNs,significantly improve detection efficiency and accuracy,with reported accuracies in various SHM tasks.However,significant research gaps remain,including challenges with the consistency,quality,and environmental resilience of image data,a notable lack of standardized models and datasets for training across diverse structures,and concerns regarding computational costs,model interpretability,and seamless integration with existing systems.Future work should focus on developing more robust models through data augmentation,transfer learning,and hybrid approaches,standardizing protocols,and fostering interdisciplinary collaboration to overcome these limitations and achieve more reliable,scalable,and affordable SHM systems.展开更多
This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert ...This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.展开更多
Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced ima...Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.展开更多
As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the...As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.展开更多
Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information...Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information.This allows an in-depth exploration of the rock microstructures and the coupled chemical characteristics in the BSE-SEM image to be made using image processing techniques.Although image processing is a powerful tool for revealing the more subtle data“hidden”in a picture,it is not a commonly employed method in geoscientific microstructural analysis.Here,we briefly introduce the general principles of image processing,and further discuss its application in studying rock microstructures using BSE-SEM image data.展开更多
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of app...Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.展开更多
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis...In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettin...Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes.展开更多
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金supported in part by the National Natural Science Foundation of China[62301374]Hubei Provincial Natural Science Foundation of China[2022CFB804]+2 种基金Hubei Provincial Education Research Project[B2022057]the Youths Science Foundation of Wuhan Institute of Technology[K202240]the 15th Graduate Education Innovation Fund of Wuhan Institute of Technology[CX2023295].
文摘This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualization enhancement.However,fine structure registration of complex thoracoabdominal organs and large deformation registration caused by respiratory motion is challenging.To deal with this problem,we propose a 3D multi-scale attention VoxelMorph(MAVoxelMorph)registration network.To alleviate the large deformation problem,a multi-scale axial attention mechanism is utilized by using a residual dilated pyramid pooling for multi-scale feature extraction,and position-aware axial attention for long-distance dependencies between pixels capture.To further improve the large deformation and fine structure registration results,a multi-scale context channel attention mechanism is employed utilizing content information via adjacent encoding layers.Our method was evaluated on four public lung datasets(DIR-Lab dataset,Creatis dataset,Learn2Reg dataset,OASIS dataset)and a local dataset.Results proved that the proposed method achieved better registration performance than current state-of-the-art methods,especially in handling the registration of large deformations and fine structures.It also proved to be fast in 3D image registration,using about 1.5 s,and faster than most methods.Qualitative and quantitative assessments proved that the proposed MA-VoxelMorph has the potential to realize precise and fast tumor localization in clinical interventional surgeries.
基金funded by the Deanship of Research and Graduate Studies at King Khalid University through small group research under grant number RGP1/278/45.
文摘This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
文摘The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality.
基金supported by the Science Committee of the Ministry of Higher Education and Science of the Republic of Kazakhstan within the framework of grant AP23489899“Applying Deep Learning and Neuroimaging Methods for Brain Stroke Diagnosis”.
文摘Deep learning now underpins many state-of-the-art systems for biomedical image and signal processing,enabling automated lesion detection,physiological monitoring,and therapy planning with accuracy that rivals expert performance.This survey reviews the principal model families as convolutional,recurrent,generative,reinforcement,autoencoder,and transfer-learning approaches as emphasising how their architectural choices map to tasks such as segmentation,classification,reconstruction,and anomaly detection.A dedicated treatment of multimodal fusion networks shows how imaging features can be integrated with genomic profiles and clinical records to yield more robust,context-aware predictions.To support clinical adoption,we outline post-hoc explainability techniques(Grad-CAM,SHAP,LIME)and describe emerging intrinsically interpretable designs that expose decision logic to end users.Regulatory guidance from the U.S.FDA,the European Medicines Agency,and the EU AI Act is summarised,linking transparency and lifecycle-monitoring requirements to concrete development practices.Remaining challenges as data imbalance,computational cost,privacy constraints,and cross-domain generalization are discussed alongside promising solutions such as federated learning,uncertainty quantification,and lightweight 3-D architectures.The article therefore offers researchers,clinicians,and policymakers a concise,practice-oriented roadmap for deploying trustworthy deep-learning systems in healthcare.
文摘Structural Health Monitoring(SHM)systems play a key role in managing buildings and infrastructure by delivering vital insights into their strength and structural integrity.There is a need for more efficient techniques to detect defects,as traditional methods are often prone to human error,and this issue is also addressed through image processing(IP).In addition to IP,automated,accurate,and real-time detection of structural defects,such as cracks,corrosion,and material degradation that conventional inspection techniques may miss,is made possible by Artificial Intelligence(AI)technologies like Machine Learning(ML)and Deep Learning(DL).This review examines the integration of computer vision and AI techniques in Structural Health Monitoring(SHM),investigating their effectiveness in detecting various forms of structural deterioration.Also,it evaluates ML and DL models in SHM for their accuracy in identifying and assessing structural damage,ultimately enhancing safety,durability,and maintenance practices in the field.Key findings reveal that AI-powered approaches,especially those utilizing IP and DL models like CNNs,significantly improve detection efficiency and accuracy,with reported accuracies in various SHM tasks.However,significant research gaps remain,including challenges with the consistency,quality,and environmental resilience of image data,a notable lack of standardized models and datasets for training across diverse structures,and concerns regarding computational costs,model interpretability,and seamless integration with existing systems.Future work should focus on developing more robust models through data augmentation,transfer learning,and hybrid approaches,standardizing protocols,and fostering interdisciplinary collaboration to overcome these limitations and achieve more reliable,scalable,and affordable SHM systems.
基金supported from the Strategic Pioneer Program of the Astronomy Large-Scale Scientific FacilityChinese Academy of Sciences and the Science and Education Integration Funding of University of Chinese Academy of Sciences+9 种基金the supports from the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)the supports from the Strategic Priority Research Program of the Chinese Academy of Sciences under grant No.XDB0550000the National Natural Science Foundation of China(NSFC,grant Nos.12422303 and12261141690)the supports from the NSFC(grant No.12403024)supports from the NSFC through grant Nos.11988101 and 11933004the Postdoctoral Fellowship Program of CPSF under grant No.GZB20240731the Young Data Scientist Project of the National Astronomical Data Centerthe China Post-doctoral Science Foundation(No.2023M743447)supports from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE。
文摘This paper provides a comprehensive introduction to the mini-Si Tian Real-time Image Processing pipeline(STRIP)and evaluates its operational performance.The STRIP pipeline is specifically designed for real-time alert triggering and light curve generation for transient sources.By applying the STRIP pipeline to both simulated and real observational data of the Mini-Si Tian survey,it successfully identified various types of variable sources,including stellar flares,supernovae,variable stars,and asteroids,while meeting requirements of reduction speed within 5 minutes.For the real observational data set,the pipeline detected one flare event,127 variable stars,and14 asteroids from three monitored sky regions.Additionally,two data sets were generated:one,a real-bogus training data set comprising 218,818 training samples,and the other,a variable star light curve data set with 421instances.These data sets will be used to train machine learning algorithms,which are planned for future integration into STRIP.
基金funded by Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/MRC/13/771-4.
文摘Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.
基金supported by the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+3 种基金the National Science Foundation of China 12422303,12403024,12222301,12173007,and 12261141690the Postdoctoral Fellowship Program of CPSF under grant Number GZB20240731the Young Data Scientist Project of the National Astronomical Data Center,and the China Post-doctoral Science Foundation No.2023M743447support from the NSFC through grant No.12303039 and No.12261141690.
文摘As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.
基金funded by the National Natural Science Foundation(No.42261134535)the National Key Research and Development Program(No.2023YFE0125000)+2 种基金the Frontiers Science Center for Deep-time Digital Earth(No.2652023001)the 111 Project of the Ministry of Science and Technology(No.BP0719021)supported by the department of Geology,University of Vienna(No.FA536901)。
文摘Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information.This allows an in-depth exploration of the rock microstructures and the coupled chemical characteristics in the BSE-SEM image to be made using image processing techniques.Although image processing is a powerful tool for revealing the more subtle data“hidden”in a picture,it is not a commonly employed method in geoscientific microstructural analysis.Here,we briefly introduce the general principles of image processing,and further discuss its application in studying rock microstructures using BSE-SEM image data.
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金National Natural Science Foundation of China,Grant/Award Number:62274142Hangzhou Major Technology Innovation Project of Artificial Intelligence,Grant/Award Number:2022AIZD0060。
文摘Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.
基金Scientific Research Deanship has funded this project at the University of Ha’il–Saudi Arabia Ha’il–Saudi Arabia through project number RG-21104.
文摘In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
文摘Angle detection is a crucial aspect of industrial automation,ensuring precise alignment and orientation ofcomponents in manufacturing processes.Despite the widespread application of computer vision in industrialsettings,angle detection remains an underexplored domain,with limited integration into production lines.Thispaper addresses the need for automated angle detection in industrial environments by presenting a methodologythat eliminates training time and higher computation cost on Graphics Processing Unit(GPU)from machinelearning in computer vision(e.g.,Convolutional Neural Networks(CNN)).Our approach leverages advanced imageprocessing techniques and a strategic combination of algorithms,including contour selection,circle regression,polar warp transformation,and outlier detection,to provide an adaptive solution for angle detection.By configuringthe algorithm with a diverse dataset and evaluating its performance across various objects,we demonstrate itsefficacy in achieving reliable results,with an average error of only 0.5 degrees.Notably,this error margin is 3.274times lower than the acceptable threshold.Our study highlights the importance of accurate angle detection inindustrial settings and showcases the reliability of our algorithm in accurately determining angles,thus contributingto improved manufacturing processes.