期刊文献+
共找到86,987篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-scale damage and fracture analysis and statistical damage constitutive model of shallow coral reef limestone based on digital core
1
作者 Yingwei Zhu Xinping Li +4 位作者 Zhengrong Zhou Dengxing Qu Fei Meng Shaohua Hu Wenjie Li 《International Journal of Mining Science and Technology》 2025年第11期1849-1869,共21页
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime... Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL. 展开更多
关键词 Coral reef limestone multi-scale mechanics Digital core Pore structure Representative volume element damage and fracture damage statistical constitutive model
在线阅读 下载PDF
Multi-Scale Damage Model for Quasi-Brittle Composite Materials
2
作者 Decheng Feng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期997-1014,共18页
In the present paper,a hierarchical multi-scale method is developed for the nonlinear analysis of composite materials undergoing heterogeneity and damage.Starting from the homogenization theory,the energy equivalence ... In the present paper,a hierarchical multi-scale method is developed for the nonlinear analysis of composite materials undergoing heterogeneity and damage.Starting from the homogenization theory,the energy equivalence between scales is developed.Then accompanied with the energy based damage model,the multi-scale damage evolutions are resolved by homogenizing the energy scalar over the meso-cell.The macroscopic behaviors described by the multi-scale damage evolutions represent the mesoscopic heterogeneity and damage of the composites.A rather simple structure made from particle reinforced composite materials is developed as a numerical example.The agreement between the fullscale simulating results and the multi-scale simulating results demonstrates the capacity of the proposed model to simulate nonlinear behaviors of quasi-brittle composite materials within the multi-scale framework. 展开更多
关键词 Energy integration multi-scale damage evolution NONLINEARITY COMPOSITES quasi-brittle materials
在线阅读 下载PDF
An Equivalent Strain Based Multi-Scale Damage Model of Concrete
3
作者 Shixue Liang Hankun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1015-1038,共24页
A multi-scale damage model of concrete is proposed based on the concept of energy equivalent strain for generic two-or three-dimensional applications.Continuum damage mechanics serves as the framework to describe the ... A multi-scale damage model of concrete is proposed based on the concept of energy equivalent strain for generic two-or three-dimensional applications.Continuum damage mechanics serves as the framework to describe the basic damage variables,namely the tensile and compressive damage.The homogenized Helmholtz free energy is introduced as the bridge to link the micro-cell and macroscopic material.The crack propagation in micro-cells is modeled,and the Helmholtz free energy in the cracked micro-structure is calculated and employed to extract the damage evolution functions in the macroscopic material.Based on the damage energy release rates and damage consistent condition,the energy equivalent strain is used to expand the uniaxial damage model to the multi-dimensional damage model.Agreements with existing experimental data that include uniaxial tensile and compressive tests,biaxial compression and biaxial peak stress envelop demonstrate the capacity of the multi-scale damage model in reproducing the typical nonlinear performances of concrete specimens.The simulation of precast laminated concrete slab further demonstrates its application to concrete structures. 展开更多
关键词 CONCRETE multi-scale damage energy equivalent strain.
在线阅读 下载PDF
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
4
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention TRANSFORMER
在线阅读 下载PDF
MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection
5
作者 Jia Liu Hao Chen +5 位作者 Hang Gu Yushan Pan Haoran Chen Erlin Tian Min Huang Zuhe Li 《Computers, Materials & Continua》 2026年第1期687-710,共24页
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra... Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability. 展开更多
关键词 Remote sensing change detection deep learning wavelet transform multi-scale
在线阅读 下载PDF
The combination of Astragali Radix and Anemarrhenae Rhizoma in the treatment of ultraviolet skin damage by regulating the PI3K-AKT pathway
6
作者 Jin-Sui He Jia-Yan Lin +6 位作者 Ding-Kang Sun Yi-Fan Zhao Pan Yang Li-Sha Ma Chun-Yan Diao Xue-Ying Liu Qing-Wei Wang 《Traditional Medicine Research》 2026年第3期1-11,共11页
Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and ... Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and Anemarrhenae Rhizoma(AAR)is a common pairing in traditional Chinese medicine(TCM).According to earlier studies,they possess properties capable of alleviating the adverse impacts of UVR on the skin.However,the specific actions and underlying mechanisms require further investigation.The study aims to analyze the efficacy of AR-AAR in preventing UVR-induced skin damage and to clarify the associated molecular mechanisms.Methods:Potential signaling pathways by which AR and AAR may protect against UVR-induced skin damage were identified with network pharmacology,molecular docking techniques and molecular dynamics(MD)simulation.Except the normal group,the back skin of SD rats was exposed to 1.1 mW/cm^(2) UVA combined with 0.1 mW/cm^(2) UVB daily,and the UVR skin damage model was established.Morphological features of skin tissues of different groups were discovered through Hematoxylin and Eosin(HE)staining,Masson staining,Weigert staining.ELISA was utilized to measure the levels of reactive oxygen species(ROS),Interleukin 6(IL-6),Interleukin 1β(IL-1β)and Tumor necrosis factos-α(TNF-α)in skin tissues.RT-PCR and Western blot were employed to quantify the mRNA and protein contents of PI3K,AKT,and MMP-9.Results:Network pharmacology analysis predicts that AR-AAR may improve skin damage induced by UVR through the PI3K/AKT signaling pathway.Histological staining shows that AR-AAR can significantly reduce inflammatory infiltration and fibrosis in damaged skin.Treatment with AR-AAR(2:1)significantly reduced the expression levels of IL-1β,IL-6,TNF-αand ROS in UVR-damaged rat skin.After treatment with AR-AAR(2:1),not only did the relative mRNA expression levels of PI3K and AKT and the protein expression levels of PI3K,AKT,P-PI3K,and P-AKT increase,but the mRNA and protein expression levels of MMP-9 decreased.Conclusion:The study indicate that the AR-AAR combination and its active components may mitigate UVR skin damage by modulating the PI3K/AKT signaling pathway. 展开更多
关键词 Astragali Radix Anemarrhenae Rhizoma COMBINATION ULTRAVIOLET skin damage
暂未订购
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
7
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Damage and repair in retinal degenerative diseases:Molecular basis through clinical translation
8
作者 Ziting Zhang Junfeng Ma +3 位作者 Wahid Shah Xin Quan Tao Ding Yuan Gao 《Neural Regeneration Research》 2026年第4期1383-1395,共13页
Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological change... Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision. 展开更多
关键词 cell replacement therapy DEGENERATION GLAUCOMA optic nerve damage regenerative medicine retinal degenerative disease retinal diseases retinal ganglion cells stem cell therapy vision restoration
暂未订购
Homogenization-based multi-scale damage theory 被引量:3
9
作者 LI Jie 1,2 & REN XiaoDan 1 1 School of Civil Engineering, Tongji University, Shanghai 200092, China 2 State Key Laboratory of Disaster Reduction in Civil Engineering, Shanghai 200092, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第4期690-698,共9页
The research of modern mechanics reveals that the damage and failure of structures should be considered on different scales. The present paper is dedicated to establishing the multi-scale damage theory for the nonline... The research of modern mechanics reveals that the damage and failure of structures should be considered on different scales. The present paper is dedicated to establishing the multi-scale damage theory for the nonlinear structural analysis. Starting from the asymptotic expansion based homogenization theory, the multi-scale energy integration is proposed to bridge the gap between the micro and macro scales. By recalling the Helmholtz free energy based damage definition, the damage variable is represented by the multi-scale energy integration. Hence the damage evolution could be numerically simulated on the basis of the unit cell analysis rather than the experimental data identification. Finally the framework of the multi-scale damage theory is established by transforming the multi-scale damage evolution into the conventional continuum damage mechanics. The agree- ment between the simulated results and the benchmark results indicates the validity and effectiveness of the proposed theory. 展开更多
关键词 multi-scale damage REPRESENTATION ASYMPTOTIC method CONSTITUTIVE model numerical simulation
原文传递
A Multi-scale Corrosion Fatigue Damage Model of Aluminum Alloy Considering Multiple Pits and Cracks 被引量:4
10
作者 Bin Sun Yang Zheng Zhaoxia Li 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第6期731-743,共13页
A multi-scale model is developed to link the continuum damage variable in macroscale to the number density of multiple pits and cracks in microscale for studying the corrosion fatigue of aluminum alloy from multi-scal... A multi-scale model is developed to link the continuum damage variable in macroscale to the number density of multiple pits and cracks in microscale for studying the corrosion fatigue of aluminum alloy from multi-scale viewpoint.The developed model is used to predict the coherent multi-scale corrosion fatigue process of aluminum alloy component in the 3.5 wt% NaC1water solution under constant stress amplitude at a nominal frequency of 5Hz, and the numerical prediction results are compared with the experimental results.It shows that the model is effective and can be used to study the corrosion fatigue mechanisms of alurninum alloy from both macro and microscale viewpoints. 展开更多
关键词 multi-scale CONTINUUM damage PIT Crack CORROSION fatigue Aluminum alloy
原文传递
Multi-scale fatigue damage model for steel structures working under high temperature 被引量:1
11
作者 Huajing Guo Bin Sun Zhaoxia Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期615-623,共9页
In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fat... In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model. 展开更多
关键词 Steel structures High temperature multi-scale damage model MICROCRACKS GENERALIZED self-consistentmethod
在线阅读 下载PDF
Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular 被引量:1
12
作者 Hui-Juan Guo Ying-Hua Liu +2 位作者 Yi-Nao Su Quan-Li Zhang Guo-Dong Zhan 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期336-348,共13页
We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcrack... We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology. 展开更多
关键词 solid expandable tubular(SET) material microstructure damage multi-scale elastoplastic model virtual failure
原文传递
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:3
13
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
14
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Creep constitutive model for damaged soft rock based on fractional-order nonlinear theory 被引量:1
15
作者 BAO Min ZHOU Zihan +1 位作者 CHEN Zhonghui ZHANG Lingfei 《Journal of Mountain Science》 2025年第6期2276-2290,共15页
Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s... Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models. 展开更多
关键词 Mining damage Creep damage FRACTIONAL-ORDER Constitutive model Secondary development
原文传递
Impact of Zika virus non-structural protein mutations on hippocampal damage
16
作者 Larissa M.G.Cassiano Roney S.Coimbra 《Neural Regeneration Research》 SCIE CAS 2025年第8期2307-2308,共2页
The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Braz... The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Brazil.Yet,its impact goes beyond fetal and neonatal abnormalities,also affecting the central nervous system(CNS)in both children and adults,leading to enduring cognitive and behavioral impairments. 展开更多
关键词 damage FETAL NEONATAL
暂未订购
A multi-scale and multi-mechanism coupled model for carbon isotope fractionation of methane during shale gas production 被引量:1
17
作者 Jun Wang Fang-Wen Chen +4 位作者 Wen-Biao Li Shuang-Fang Lu Sheng-Xian Zhao Yong-Yang Liu Zi-Yi Wang 《Petroleum Science》 2025年第7期2719-2746,共28页
Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some sho... Prediction of production decline and evaluation of the adsorbed/free gas ratio are critical for determining the lifespan and production status of shale gas wells.Traditional production prediction methods have some shortcomings because of the low permeability and tightness of shale,complex gas flow behavior of multi-scale gas transport regions and multiple gas transport mechanism superpositions,and complex and variable production regimes of shale gas wells.Recent research has demonstrated the existence of a multi-stage isotope fractionation phenomenon during shale gas production,with the fractionation characteristics of each stage associated with the pore structure,gas in place(GIP),adsorption/desorption,and gas production process.This study presents a new approach for estimating shale gas well production and evaluating the adsorbed/free gas ratio throughout production using isotope fractionation techniques.A reservoir-scale carbon isotope fractionation(CIF)model applicable to the production process of shale gas wells was developed for the first time in this research.In contrast to the traditional model,this model improves production prediction accuracy by simultaneously fitting the gas production rate and δ^(13)C_(1) data and provides a new evaluation method of the adsorbed/free gas ratio during shale gas production.The results indicate that the diffusion and adsorption/desorption properties of rock,bottom-hole flowing pressure(BHP)of gas well,and multi-scale gas transport regions of the reservoir all affect isotope fractionation,with the diffusion and adsorption/desorption parameters of rock having the greatest effect on isotope fractionation being D∗/D,PL,VL,α,and others in that order.We effectively tested the universality of the four-stage isotope fractionation feature and revealed a unique isotope fractionation mechanism caused by the superimposed coupling of multi-scale gas transport regions during shale gas well production.Finally,we applied the established CIF model to a shale gas well in the Sichuan Basin,China,and calculated the estimated ultimate recovery(EUR)of the well to be 3.33×10^(8) m^(3);the adsorbed gas ratio during shale gas production was 1.65%,10.03%,and 23.44%in the first,fifth,and tenth years,respectively.The findings are significant for understanding the isotope fractionation mechanism during natural gas transport in complex systems and for formulating and optimizing unconventional natural gas development strategies. 展开更多
关键词 Shale gas Isotope fractionation multi-scale Production prediction Adsorbed/free gas ratio
原文传递
DNA Damage Response and Its Inhibitors:Current Perspectives and Future Directions 被引量:1
18
作者 ZHENG Xueyi XIE Dan CAI Muyan 《中国细胞生物学学报》 2025年第3期542-559,共18页
The DDR(DNA damage response)is an essential cellular mechanism that detects and repairs DNA lesions to maintain genomic stability.Dysregulation of DDR pathways is frequently observed in human tumors,leading to increas... The DDR(DNA damage response)is an essential cellular mechanism that detects and repairs DNA lesions to maintain genomic stability.Dysregulation of DDR pathways is frequently observed in human tumors,leading to increased genomic instability and promoting tumor progression.Consequently,targeting DDR mechanisms has emerged as a promising therapeutic strategy in oncology.This review provides an overview of the major DDR pathways,highlighting the roles of key proteins involved in various DDR processes.A detailed understanding of these molecular mechanisms has paved the way for the development of targeted antitumor agents,including inhibitors of PARP1,ATM,ATR,CHK1,CHK2,DNA-PK,and WEE1.Additionally,the significant challenges in the development of DDR inhibitors are examined,including tumor microenvironment heterogeneity,resistance mechanisms,issues with selectivity and toxicity,and the complexities associated with clinical trial design.Finally,future directions and emerging strategies to improve DDR-targeted therapies are discussed.These strategies include biomarker-driven precision medicine,novel combination therapies,advanced drug delivery systems,and the potential application of artificial intelligence to optimize treatment outcomes. 展开更多
关键词 DNA damage response INHIBITOR BIOMARKER
原文传递
Penetration-deflagration coupling damage performance of rod-like reactive shaped charge penetrator impacting thick steel plates 被引量:1
19
作者 Tao Sun Haifu Wang +3 位作者 Shipeng Wang Jie Gong Wenhao Qiu Yuanfeng Zheng 《Defence Technology(防务技术)》 2025年第7期152-164,共13页
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra... The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly. 展开更多
关键词 Reactive materials Al-PTFE composites Penetration model damage effect
在线阅读 下载PDF
Investigation on Fatigue Damage of Offshore Risers Due to Slug-Induced Vibrations Based on Arbitrary Lagrangian-Eulerian(ALE)-Absolute Nodal Coordinate Formulation(ANCF) 被引量:1
20
作者 LIU De-peng ZHANG Yu AI Shang-mao 《China Ocean Engineering》 2025年第5期941-955,共15页
This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the A... This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the Absolute Nodal Coordinate Formulation(ANCF)and a spatial-temporal density variation equation to analyze how slug flow parameters affect the SIV response of risers.Structural displacement,stress,and fatigue responses are systematically evaluated to characterize the structural behavior under SIV conditions.Longer slugs induce more pronounced traveling wave characteristics,while shorter slugs facilitate a mixed traveling-standing wave mode.Moreover,higher slug frequencies lead to increased fatigue accumulation,especially over an extended touchdown zone,thereby compromising the structural integrity of the riser.The findings yield valuable insights into the dynamic interactions between slug flow and riser response.This research advances the understanding of SIV mechanisms and provides a theoretical foundation for fatigue assessment and structural optimization,contributing to the safe and efficient design of offshore risers in deepwater environments. 展开更多
关键词 slug flow offshore riser fatigue damage dynamic analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部