Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been prop...Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission.展开更多
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource...The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.展开更多
This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aim...This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.展开更多
In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic...In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic priority. However,the priority of the imaging task is dynamic in actual engineering. To supplement the research on imaging observation, this paper proposes the task priority model, dynamic scheduling strategy and Heuristic algorithm. At first, this paper analyzes the relevant theoretical basis of imaging observation, decomposes the task priority into four parts, including target priority, imaging task priority, track, telemetry & control(TT&C)requirement priority and data transmission requirement priority, summarizes the attribute factors that affect the above four types of priority in detail, and designs the corresponding priority model. Then, this paper takes the emergency tasks scheduling problem as the background, proposes the dynamic scheduling strategy and heuristic algorithm. Finally, the task priority model,dynamic scheduling strategy and heuristic algorithm are verified by experiments.展开更多
A trusted execution environment(TEE)is a system-on-chip and CPU system with a wide security solution available on today’s Arm application(APP)processors,which dominate the smartphone market.Generally,mobile APPs crea...A trusted execution environment(TEE)is a system-on-chip and CPU system with a wide security solution available on today’s Arm application(APP)processors,which dominate the smartphone market.Generally,mobile APPs create a trusted application(TA)in the TEE to process sensitive information,such as payment or message encryption,which is transparent to the APPs running in the rich execution environments(REEs).In detail,the REE and TEE interact and eventually send back the results to the APP in the REE through the interface provided by the TA.Such an operation definitely increases the overhead of mobile APPs.In this paper,we first present a comprehensive analysis of the performance of open-source TEE encrypted text.We then propose a high energy-efficient task scheduling strategy(ETS-TEE).By leveraging the deep learning algorithm,our policy considers the complexity of TA tasks,which are dynamically scheduled between modeling on the local device and offloading to an edge server.We evaluate our approach on Raspberry Pi 3B as the local mobile device and Jetson TX2 as the edge server.The results show that compared with the default scheduling strategy on the local device,our approach achieves an average of 38.0%energy reduction and 1.6×speedup.This greatly reduces the performance loss caused by mobile devices in order to protect the safe execution of applications,so that the trusted execution environment has both security and high performance.展开更多
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It cons...This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.展开更多
Wide-area high-performance computing is widely used for large-scale parallel computing applications owing to its high computing and storage resources.However,the geographical distribution of computing and storage reso...Wide-area high-performance computing is widely used for large-scale parallel computing applications owing to its high computing and storage resources.However,the geographical distribution of computing and storage resources makes efficient task distribution and data placement more challenging.To achieve a higher system performance,this study proposes a two-level global collaborative scheduling strategy for wide-area high-performance computing environments.The collaborative scheduling strategy integrates lightweight solution selection,redundant data placement and task stealing mechanisms,optimizing task distribution and data placement to achieve efficient computing in wide-area environments.The experimental results indicate that compared with the state-of-the-art collaborative scheduling algorithm HPS+,the proposed scheduling strategy reduces the makespan by 23.24%,improves computing and storage resource utilization by 8.28%and 21.73%respectively,and achieves similar global data migration costs.展开更多
基金supported by the National Natural Science Foundation of China (52275480)the Guizhou Provincial Science and Technology Program of Qiankehe Zhongdi Guiding ([2023]02)+1 种基金the Guizhou Provincial Science and Technology Program of Qiankehe Platform Talent Project (GCC[2023]001)the Guizhou Provincial Science and Technology Project of Qiankehe Platform Project (KXJZ[2024]002).
文摘Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission.
文摘The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.
基金the Shandong Province Key Research and Development Program under Grant No.2021SFGC0601.
文摘This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.
基金supported by the National Natural Science Foundation of China(61773120,61473301,71501180,71501179,61603400)。
文摘In the imaging observation system, imaging task scheduling is an important topic. Most scholars study the imaging task scheduling from the perspective of static priority, and only a few from the perspective of dynamic priority. However,the priority of the imaging task is dynamic in actual engineering. To supplement the research on imaging observation, this paper proposes the task priority model, dynamic scheduling strategy and Heuristic algorithm. At first, this paper analyzes the relevant theoretical basis of imaging observation, decomposes the task priority into four parts, including target priority, imaging task priority, track, telemetry & control(TT&C)requirement priority and data transmission requirement priority, summarizes the attribute factors that affect the above four types of priority in detail, and designs the corresponding priority model. Then, this paper takes the emergency tasks scheduling problem as the background, proposes the dynamic scheduling strategy and heuristic algorithm. Finally, the task priority model,dynamic scheduling strategy and heuristic algorithm are verified by experiments.
基金supported by the National Natural Science Foundation of China (No.61902229)Fundamental Research Funds for the Central Universities (No.GK202103084).
文摘A trusted execution environment(TEE)is a system-on-chip and CPU system with a wide security solution available on today’s Arm application(APP)processors,which dominate the smartphone market.Generally,mobile APPs create a trusted application(TA)in the TEE to process sensitive information,such as payment or message encryption,which is transparent to the APPs running in the rich execution environments(REEs).In detail,the REE and TEE interact and eventually send back the results to the APP in the REE through the interface provided by the TA.Such an operation definitely increases the overhead of mobile APPs.In this paper,we first present a comprehensive analysis of the performance of open-source TEE encrypted text.We then propose a high energy-efficient task scheduling strategy(ETS-TEE).By leveraging the deep learning algorithm,our policy considers the complexity of TA tasks,which are dynamically scheduled between modeling on the local device and offloading to an edge server.We evaluate our approach on Raspberry Pi 3B as the local mobile device and Jetson TX2 as the edge server.The results show that compared with the default scheduling strategy on the local device,our approach achieves an average of 38.0%energy reduction and 1.6×speedup.This greatly reduces the performance loss caused by mobile devices in order to protect the safe execution of applications,so that the trusted execution environment has both security and high performance.
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.61525304)the National Natural Science Foundation of China(No.61873328)。
文摘This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job assignment between factories,job sequence in each factory,and machine allocation for each job.We present a mixed inter linear programming model and propose a Novel MultiObjective Evolutionary Algorithm based on Decomposition(NMOEA/D).We specially design a decoding scheme according to the characteristics of the EADHFSPMT.To initialize a population with certain diversity,four different rules are utilized.Moreover,a cooperative search is designed to produce new solutions based on different types of relationship between any solution and its neighbors.To enhance the quality of solutions,two local intensification operators are implemented according to the problem characteristics.In addition,a dynamic adjustment strategy for weight vectors is designed to balance the diversity and convergence,which can adaptively modify weight vectors according to the distribution of the non-dominated front.Extensive computational experiments are carried out by using a number of benchmark instances,which demonstrate the effectiveness of the above special designs.The statistical comparisons to the existing algorithms also verify the superior performances of the NMOEA/D.
基金This work was supported by the National key R&D Program of China(2018YFB0203901)the National Natural Science Foundation of China under(Grant No.61772053)the fund of the State Key Laboratory of Software Development Environment(SKLSDE-2020ZX15).
文摘Wide-area high-performance computing is widely used for large-scale parallel computing applications owing to its high computing and storage resources.However,the geographical distribution of computing and storage resources makes efficient task distribution and data placement more challenging.To achieve a higher system performance,this study proposes a two-level global collaborative scheduling strategy for wide-area high-performance computing environments.The collaborative scheduling strategy integrates lightweight solution selection,redundant data placement and task stealing mechanisms,optimizing task distribution and data placement to achieve efficient computing in wide-area environments.The experimental results indicate that compared with the state-of-the-art collaborative scheduling algorithm HPS+,the proposed scheduling strategy reduces the makespan by 23.24%,improves computing and storage resource utilization by 8.28%and 21.73%respectively,and achieves similar global data migration costs.
基金the National Natural Science Foundation of China under Grant No.90412001 (国家自然科学基金)the National High-Tech Research and Development Plan of China under Grant No.2006AA02Z334 (国家高技术研究发展计划(863))the National Basic Research Program of China under Grant No.G2005CB321806 (国家重点基础研究发展计划(973))