This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions....This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.展开更多
This study demonstrated the feasibility of implementing of MBR in pharmaceutical wastewater independently, and concluded different applications of MBR in industries. Membrane bioreactor (MBR) technology was a new wast...This study demonstrated the feasibility of implementing of MBR in pharmaceutical wastewater independently, and concluded different applications of MBR in industries. Membrane bioreactor (MBR) technology was a new wastewater treatment technology with a combination of membrane separation technology and biological treatment technology, which had unique advantages on pharmaceutical wastewater treatment. The modified membrane rector design provided a significantly lower concentration of NH3-N, Phosphorous, Total Nitrogen and COD around the membranes, and subsequently a more sustainable membrane performance due to much lower overall fouling rates. In this paper, the classification and structure of biological waste water treatment by using MBR technology were summed up along with some examples of MBR in industrial wastewater treatment, which was emphatically analyzed and discussed. Finally, the prospect of MBR in industrial wastewater treatment was described. The industrial wastewater was a high-strength wastewater which had characteristics of complicated constituents, high organics concentration, highly toxic.展开更多
Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting ...Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting on fluid particles is modified by axiding relative permeability in Nithiarasu's expression with an axiditional surface tension term. As a test of this model, we simulate the phase separation for the case of two immiscible fluids. The numerical results show that the two coupling relative permeability coefficients K12 and K21 have the same magnitude, so the linear flux-forcing relationships satisfy Onsager reciprocity. Phase separation phenomenon is shown with the time evolution of density distribution and bears a strong similarity to the results obtained from other numerical models and the flows in sands. At the same time, the dynamical rules in this model are local, therefore it can be run on massively parallel computers with well computational efficiency.展开更多
Separation technology of rare earth elements (REEs), as the critical step in the separation process, had long been fraught with technical difficulty. A research project conducted by Baotou Shibo Rare Earth Extracti...Separation technology of rare earth elements (REEs), as the critical step in the separation process, had long been fraught with technical difficulty. A research project conducted by Baotou Shibo Rare Earth Extraction & Equipment Co. Ltd., Baotou REE Research Institute, and Baotou Steel & REE Group Hi-Tech Co. Ltd (Inner Mongolia), has successfully solved the problem using a centrifugal extractor and advanced techniques to achieve a key breakthrough.展开更多
Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply...Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.展开更多
Chambersite is a rare mineral worldwide, a manganese chloride borate (Mn3BTO13C1), which was first discovered in the recovered brine from a salt dome at Chambers, Texas, USA. This rare mineral has been proven to hav...Chambersite is a rare mineral worldwide, a manganese chloride borate (Mn3BTO13C1), which was first discovered in the recovered brine from a salt dome at Chambers, Texas, USA. This rare mineral has been proven to have a great utilization value in anti-nuclear radiation, high- temperature friction materials, medicine and stealth materials, and can be used in aerospace and aviation fields. China has the world's only mineable chambersite deposit in Jixian County, Tianjin.展开更多
Coated capillary columns were prepared by sol-gel technology and used in the separation of basic proteins with capillary zone electrophoresis. The results indicated that a significant decrease in protein adsorption wa...Coated capillary columns were prepared by sol-gel technology and used in the separation of basic proteins with capillary zone electrophoresis. The results indicated that a significant decrease in protein adsorption was obtained and EOF was also diminished to zero in the pH range of 3-10.展开更多
Blockchain,artificial intelligence,and other technologies have been increasingly integrated with the law,and the construction of smart justice and Internet courts in various places has a prominent effect on court info...Blockchain,artificial intelligence,and other technologies have been increasingly integrated with the law,and the construction of smart justice and Internet courts in various places has a prominent effect on court informatization.The Supreme People’s Court is currently carrying out the pilot reform of separation between complicated and simple cases in civil procedure,and legal technology will inevitably become a major means to enable the reform.In the field of electronic litigation,legal technology itself has become a goal of the reform.Regarding the trials of pilot basic courts,legal technology has been more deeply applied in many links such as trial activities and trial management,playing an essential role in improving judicial efficiency,and becoming an important way to solve judicial dilemmas such as“litigation explosion.”However,the history of modern society reminds us that we should be reasonably optimistic about the development of technology,especially in the field of justice.展开更多
After a review on the conventional separation process of rare earths (RE), hyperlink extraction technology was introduced and a potential process was proposed for clean separation of RE. A great amount of acid, base...After a review on the conventional separation process of rare earths (RE), hyperlink extraction technology was introduced and a potential process was proposed for clean separation of RE. A great amount of acid, base and water was consumed in the con- ventional RE separation process which included the procedures of raw material dissolving, extraction separation and precipitation. Therefore hyperlink extraction technology had been developed, by which the repeated consumption of acid and base could be avoided during the extraction process. And based on the theory and successfid applications of the hyperlink extraction technology, we pro- posed the integral hyperlink process in which the intermediate acid resulted in individual procedures would be recycled and reused after being treated. The proposed process would make it feasible to consume no chemicals except for oxalic acid, and so could be a promising clean separation technology with a significant reduction on consumption and emission.展开更多
1 Introduction Salt Lake,as a kind of chemical resources,has been attracted to many researchers,especially the resources of lithium.As reported,many kinds of brines exist in the world depending on the compositions of ...1 Introduction Salt Lake,as a kind of chemical resources,has been attracted to many researchers,especially the resources of lithium.As reported,many kinds of brines exist in the world depending on the compositions of the brine.Based on the chemical composition the brines can be classified as the types of chloride,carbonate,sulfate.For different展开更多
Hydropol a water-soluble,marine-safe,non-toxic polymer,is set to revolutionize the manufacture of hygiene products,suchas wet wipes and sanitary pads by making them dissolvable,fulyflushable and preventing them from f...Hydropol a water-soluble,marine-safe,non-toxic polymer,is set to revolutionize the manufacture of hygiene products,suchas wet wipes and sanitary pads by making them dissolvable,fulyflushable and preventing them from forming fatbergs in sewers andreleasing harmful microplastics.This is thanks to the developmentof a revolutionary new dissolvable nonwoven material(flat,poroussheets that are made directly from separate filbres or from moltenplastic or plastic film)which uses Hydropol instead of conventionalplastics and helps prevent tonnes of plastic pollution from enteringthe environment.展开更多
Total saponins of Panax notoginseng have the functions of promoting blood circulation and removing phlegm, thus they have high medicinal value. There are many different extraction methods in the extraction and separat...Total saponins of Panax notoginseng have the functions of promoting blood circulation and removing phlegm, thus they have high medicinal value. There are many different extraction methods in the extraction and separation of total saponins of P. notoginseng . The extraction methods of total saponins of P. notoginseng are mainly divided into traditional extraction methods, modern extraction methods and compound extraction methods.展开更多
[Objective] The aim was to promote color wheat industrialization and meet the demand of people on nutritious grain, making both natural and safe food possible. [Method] Hardness indices of wheat were measured and laye...[Objective] The aim was to promote color wheat industrialization and meet the demand of people on nutritious grain, making both natural and safe food possible. [Method] Hardness indices of wheat were measured and layering peeling and milling technology was adopted to explore nutrients distribution in color wheat and effect of hardness on milling of wheat layers. [Result] The results indicated that total content of amino acid in color wheat was higher than that of common wheat by 13.91%-23.32%; Zhongpu Black 1 and Zhongpu Green 1 exceeded common wheat in Zn, Fe and Ca, but Zhongpu Purple 1 was generally lower; Zhongpu Green 1 was significantly higher in Fe and Ca by 371.80% and 102.86%, respectively. Mean- while, it was found that nutrients distribution of color wheat was similar to that of common ,one, namely, pericarp, testa, aleurone layer and embryo were abundant with nutrients. In addition, color wheat was concluded nutritious one and milling in- dustrialization of wheat layers could be achieved through layer-milling and separation technology. Furthermore, wheat hardness was proved the key element influencing milling of wheat layers. [Conclusion] The research set an example for nutrition development and utilization of color wheat.展开更多
Membrane technology is becoming more important for CO,_ separation from natural gas in the new era due to its process simplicity, relative ease of operation and control, compact, and easy to scale up as compared with ...Membrane technology is becoming more important for CO,_ separation from natural gas in the new era due to its process simplicity, relative ease of operation and control, compact, and easy to scale up as compared with conventional processes. Conventional processes such as absorption and adsorption for CO2 separation from natural gas are generally more energy demanding and costly for both operation and maintenance. Polymeric membranes are the current commercial membranes used for CO2 separation from natural gas. However, polymeric membranes possess drawbacks such as low permeability and selectivity, plasticization at high temperatures, as well as insufficient thermal and chemical stability. The shortcomings of commercial polymeric membranes have motivated researchers to opt for other alternatives, especially inorganic membranes due to their higher thermal stability, good chemical resistance to solvents, high mechanical strength and long lifetime. Surface modifications can be utilized in inorganic membranes to further enhance the selectivity, permeability or catalytic activities of the membrane. This paper is to provide a comprehensive review on gas separation, comparing membrane technology with other conventional methods of recovering CO2 from natural gas, challenges of current commercial polymeric membranes and inorganic membranes for CO2 removal and membrane surface modification for improved selectivity.展开更多
Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore ...Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.展开更多
Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emis...Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.展开更多
Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innova...Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.展开更多
IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high p...IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high purity separation product of maximum added value at a competitive cost.SuperLig products have high selectivity for many target species which can include metal ions,anions,and neutral molecules.In operation,the SuperLig product is first placed in a packed column.A solution containing a mixture of the target species and other chemical species is then passed through the column.The target species is removed selectively by the SuperLig product,the column is washed to remove residual feed solution,and the target species is recovered by a minimal quantity of eluent.The result is a pure and concentrated species that can be kept for its value or disposed of safely.The process is environmentally and ecologically friendly with no organic solvents being used.This paper provides a review of some examples of applications of MRT to separations of interest to the Chinese metallurgical industry.Included are several applications of MRT,including Pd separations from Pt metal refinery streams and low-grade spent catalyst wastes,Rh recovery from spent auto catalyst and other feeds,Re removal from selected impurity ions,Cd removal from Co electrolyte,Bi removal from Cu electrolyte,In and Ge separations from difficult matrices,and removal of bivalent first transition series and other metal ions from acid mine drainage(Berkeley Pit,Montana).Finally,the potential application of MRT to separations involving the recovery of rare earth metals and Li from low-level waste solutions and end-of-life products is discussed.展开更多
Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine partic...Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine particles is still a big problem. Basic separation principle of hydrocyclones and experimental research facility are simply introduced. The difficulty of separating fine particle is analyzed. Based on a solid-liquid hydrocyclone used for separating fine particles, relationships of dimensionless pressure characteristic parameters, i.e. Euler number and pressure drop ratio, with several main dimensionless parameters, such as split ratio, swirl number and gas-liquid ratio, were experimentally studied in detail. The research was carried out by using the hydrocyclonic separation experimental rig at the University of Bradford. It is shown that the less the size of particle, the less the value of radius of the balance orbit occupied by the particle, and then the more difficult for the particle to be separated. Experiments indicate that Euler number of the tested hydrocyclone increases with the rise of Reynolds number, split ratio, swirl number and gas-liquid ratio respectively, and the pressure drop ratio falls with the increase of Reynolds number, split ratio and swirl number respectively. It is concluded that the most effective way to decrease the unit energy dissipation of hydrocyclone is to reduce swirl number or gas-liquid ratio of the mixed media.展开更多
The homochiral compounds play an important role in human health and pharmaceutical industry.Currently,the chromatographic enantioseparation has become one of the most effective and practical approach to obtain pure en...The homochiral compounds play an important role in human health and pharmaceutical industry.Currently,the chromatographic enantioseparation has become one of the most effective and practical approach to obtain pure enantiomers.Herein,the exploration of advanced materials,using as chromatographic chiral stationary phases for racemic separation,has attracted great attention.Thanks to their high enantioselectivity and controllable synthesis,the emerging chiral metal-organic frameworks (CMOFs)have been widely studied as the stationary phase in chromatographic technology.In this review,we will summarize the principles of synthetic strategies and mechanism of chiral microenvironment.In particular,the recent progress and research hotspot of CMOFs regarding as the chiral stationary phases in gas chromatography (GC),high-performance liquid chromatography (HPLC),and capillary electrochromatography (CEC),are elucidated systematically according to the published work.Last but not the least,we also highlight the challenges and perspectives of rational design of CMOFs,as well as their corresponding racemic separation.We envision that the review will provide a further understanding of CMOFs and facilitate the development of chromatographic enantioselective applications.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3504501)the National Natural Science Foundation of China(52274355)。
文摘This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.
文摘This study demonstrated the feasibility of implementing of MBR in pharmaceutical wastewater independently, and concluded different applications of MBR in industries. Membrane bioreactor (MBR) technology was a new wastewater treatment technology with a combination of membrane separation technology and biological treatment technology, which had unique advantages on pharmaceutical wastewater treatment. The modified membrane rector design provided a significantly lower concentration of NH3-N, Phosphorous, Total Nitrogen and COD around the membranes, and subsequently a more sustainable membrane performance due to much lower overall fouling rates. In this paper, the classification and structure of biological waste water treatment by using MBR technology were summed up along with some examples of MBR in industrial wastewater treatment, which was emphatically analyzed and discussed. Finally, the prospect of MBR in industrial wastewater treatment was described. The industrial wastewater was a high-strength wastewater which had characteristics of complicated constituents, high organics concentration, highly toxic.
基金Project supported by the National Natural Science Foundation of China (Grant No 10302018), the Research Grants Council of the Government of the HKSAR, China (Grant No PolyU5172/020), and the Natural Science Foundation of Zhejiang Province, China (Grant No M103082).
文摘Based on a lattice Boltzmann method and general principles of porous flow, a numerical technique is presented for analysing the separation of multi-phase immiscible fluids in porous media. The total body force acting on fluid particles is modified by axiding relative permeability in Nithiarasu's expression with an axiditional surface tension term. As a test of this model, we simulate the phase separation for the case of two immiscible fluids. The numerical results show that the two coupling relative permeability coefficients K12 and K21 have the same magnitude, so the linear flux-forcing relationships satisfy Onsager reciprocity. Phase separation phenomenon is shown with the time evolution of density distribution and bears a strong similarity to the results obtained from other numerical models and the flows in sands. At the same time, the dynamical rules in this model are local, therefore it can be run on massively parallel computers with well computational efficiency.
文摘Separation technology of rare earth elements (REEs), as the critical step in the separation process, had long been fraught with technical difficulty. A research project conducted by Baotou Shibo Rare Earth Extraction & Equipment Co. Ltd., Baotou REE Research Institute, and Baotou Steel & REE Group Hi-Tech Co. Ltd (Inner Mongolia), has successfully solved the problem using a centrifugal extractor and advanced techniques to achieve a key breakthrough.
文摘Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.
文摘Chambersite is a rare mineral worldwide, a manganese chloride borate (Mn3BTO13C1), which was first discovered in the recovered brine from a salt dome at Chambers, Texas, USA. This rare mineral has been proven to have a great utilization value in anti-nuclear radiation, high- temperature friction materials, medicine and stealth materials, and can be used in aerospace and aviation fields. China has the world's only mineable chambersite deposit in Jixian County, Tianjin.
文摘Coated capillary columns were prepared by sol-gel technology and used in the separation of basic proteins with capillary zone electrophoresis. The results indicated that a significant decrease in protein adsorption was obtained and EOF was also diminished to zero in the pH range of 3-10.
文摘Blockchain,artificial intelligence,and other technologies have been increasingly integrated with the law,and the construction of smart justice and Internet courts in various places has a prominent effect on court informatization.The Supreme People’s Court is currently carrying out the pilot reform of separation between complicated and simple cases in civil procedure,and legal technology will inevitably become a major means to enable the reform.In the field of electronic litigation,legal technology itself has become a goal of the reform.Regarding the trials of pilot basic courts,legal technology has been more deeply applied in many links such as trial activities and trial management,playing an essential role in improving judicial efficiency,and becoming an important way to solve judicial dilemmas such as“litigation explosion.”However,the history of modern society reminds us that we should be reasonably optimistic about the development of technology,especially in the field of justice.
基金supported by the 863 Plan-National High Technology Research and Development Program of China (2010AA03A405)973 Program-Major Project of Chinese National Programs for Fundamental Research and Development (2012CBA01200)
文摘After a review on the conventional separation process of rare earths (RE), hyperlink extraction technology was introduced and a potential process was proposed for clean separation of RE. A great amount of acid, base and water was consumed in the con- ventional RE separation process which included the procedures of raw material dissolving, extraction separation and precipitation. Therefore hyperlink extraction technology had been developed, by which the repeated consumption of acid and base could be avoided during the extraction process. And based on the theory and successfid applications of the hyperlink extraction technology, we pro- posed the integral hyperlink process in which the intermediate acid resulted in individual procedures would be recycled and reused after being treated. The proposed process would make it feasible to consume no chemicals except for oxalic acid, and so could be a promising clean separation technology with a significant reduction on consumption and emission.
文摘1 Introduction Salt Lake,as a kind of chemical resources,has been attracted to many researchers,especially the resources of lithium.As reported,many kinds of brines exist in the world depending on the compositions of the brine.Based on the chemical composition the brines can be classified as the types of chloride,carbonate,sulfate.For different
文摘Hydropol a water-soluble,marine-safe,non-toxic polymer,is set to revolutionize the manufacture of hygiene products,suchas wet wipes and sanitary pads by making them dissolvable,fulyflushable and preventing them from forming fatbergs in sewers andreleasing harmful microplastics.This is thanks to the developmentof a revolutionary new dissolvable nonwoven material(flat,poroussheets that are made directly from separate filbres or from moltenplastic or plastic film)which uses Hydropol instead of conventionalplastics and helps prevent tonnes of plastic pollution from enteringthe environment.
基金Supported by Traditional Chinese Medicine Standardization Project of State Administration of Traditional Chinese Medicine(ZYBZH-C-YN-58)Scientific and Technological Planning Project of Yunnan Provincial Department of Science and Technology(2107ZF001)
文摘Total saponins of Panax notoginseng have the functions of promoting blood circulation and removing phlegm, thus they have high medicinal value. There are many different extraction methods in the extraction and separation of total saponins of P. notoginseng . The extraction methods of total saponins of P. notoginseng are mainly divided into traditional extraction methods, modern extraction methods and compound extraction methods.
基金Supported by National Natural Science Foundtion of China in2011(31171789)~~
文摘[Objective] The aim was to promote color wheat industrialization and meet the demand of people on nutritious grain, making both natural and safe food possible. [Method] Hardness indices of wheat were measured and layering peeling and milling technology was adopted to explore nutrients distribution in color wheat and effect of hardness on milling of wheat layers. [Result] The results indicated that total content of amino acid in color wheat was higher than that of common wheat by 13.91%-23.32%; Zhongpu Black 1 and Zhongpu Green 1 exceeded common wheat in Zn, Fe and Ca, but Zhongpu Purple 1 was generally lower; Zhongpu Green 1 was significantly higher in Fe and Ca by 371.80% and 102.86%, respectively. Mean- while, it was found that nutrients distribution of color wheat was similar to that of common ,one, namely, pericarp, testa, aleurone layer and embryo were abundant with nutrients. In addition, color wheat was concluded nutritious one and milling in- dustrialization of wheat layers could be achieved through layer-milling and separation technology. Furthermore, wheat hardness was proved the key element influencing milling of wheat layers. [Conclusion] The research set an example for nutrition development and utilization of color wheat.
基金supported by the Ministry of Higher Education Malaysia through Long Term Research Grant Scheme (A/C Number 2110226-113-00)
文摘Membrane technology is becoming more important for CO,_ separation from natural gas in the new era due to its process simplicity, relative ease of operation and control, compact, and easy to scale up as compared with conventional processes. Conventional processes such as absorption and adsorption for CO2 separation from natural gas are generally more energy demanding and costly for both operation and maintenance. Polymeric membranes are the current commercial membranes used for CO2 separation from natural gas. However, polymeric membranes possess drawbacks such as low permeability and selectivity, plasticization at high temperatures, as well as insufficient thermal and chemical stability. The shortcomings of commercial polymeric membranes have motivated researchers to opt for other alternatives, especially inorganic membranes due to their higher thermal stability, good chemical resistance to solvents, high mechanical strength and long lifetime. Surface modifications can be utilized in inorganic membranes to further enhance the selectivity, permeability or catalytic activities of the membrane. This paper is to provide a comprehensive review on gas separation, comparing membrane technology with other conventional methods of recovering CO2 from natural gas, challenges of current commercial polymeric membranes and inorganic membranes for CO2 removal and membrane surface modification for improved selectivity.
基金supported by the National Science and Technology Support Program of China(No.2012BAC11B07)the Jiangxi Science and Technology Innovation Base Plan(No.20212BCD42017)。
文摘Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.
基金supported financially by the“Xing Liao Talents Program”Project(No.XLYC1902051)the National Natural Science Foundation of China(No.22076018)+1 种基金the Fundamental Research Funds for the Central Universities(No.DUT19LAB10)the Key Laboratory of Industrial Ecology and Environmental Engineering,China Ministry of Education,and the State Key Laboratory of Catalysis in DICP(No.N-20-06)。
文摘Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted.
基金supported by the National Key Research and Development Program of China(2021YF B3802600)National Key Research and Development Project of China(2018YFE0203500)the Natural Science Foundation of Jiangsu Province(BK20190603).
文摘Membrane separation technology has been taken up for use in diverse applications such as water treatment,pharmaceutical,petroleum,and energy-related industries.Compared with the design of membrane materials,the innovation of membrane preparation technique is more urgent for the development of membrane separation technology,because it not only affects physicochemical properties and separation performance of the fabricated membranes,but also determines their potential in industrialized application.Among the various membrane preparation methods,spray technique has recently gained increasing attention because of its low cost,rapidity,scalability,minimum of environmental burden,and viability for nearly unlimited range of materials.In this Review article,we summarized and discussed the recent developments in separation membranes using the spray technique,including the fundamentals,important features and applications.The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.
文摘IBC Advanced Technologies’ Molecular Recognition Technology(MRT) SuperLig products selectively and rapidly bind with target species enabling their selective removal from solutions.The MRT process can produce a high purity separation product of maximum added value at a competitive cost.SuperLig products have high selectivity for many target species which can include metal ions,anions,and neutral molecules.In operation,the SuperLig product is first placed in a packed column.A solution containing a mixture of the target species and other chemical species is then passed through the column.The target species is removed selectively by the SuperLig product,the column is washed to remove residual feed solution,and the target species is recovered by a minimal quantity of eluent.The result is a pure and concentrated species that can be kept for its value or disposed of safely.The process is environmentally and ecologically friendly with no organic solvents being used.This paper provides a review of some examples of applications of MRT to separations of interest to the Chinese metallurgical industry.Included are several applications of MRT,including Pd separations from Pt metal refinery streams and low-grade spent catalyst wastes,Rh recovery from spent auto catalyst and other feeds,Re removal from selected impurity ions,Cd removal from Co electrolyte,Bi removal from Cu electrolyte,In and Ge separations from difficult matrices,and removal of bivalent first transition series and other metal ions from acid mine drainage(Berkeley Pit,Montana).Finally,the potential application of MRT to separations involving the recovery of rare earth metals and Li from low-level waste solutions and end-of-life products is discussed.
文摘Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine particles is still a big problem. Basic separation principle of hydrocyclones and experimental research facility are simply introduced. The difficulty of separating fine particle is analyzed. Based on a solid-liquid hydrocyclone used for separating fine particles, relationships of dimensionless pressure characteristic parameters, i.e. Euler number and pressure drop ratio, with several main dimensionless parameters, such as split ratio, swirl number and gas-liquid ratio, were experimentally studied in detail. The research was carried out by using the hydrocyclonic separation experimental rig at the University of Bradford. It is shown that the less the size of particle, the less the value of radius of the balance orbit occupied by the particle, and then the more difficult for the particle to be separated. Experiments indicate that Euler number of the tested hydrocyclone increases with the rise of Reynolds number, split ratio, swirl number and gas-liquid ratio respectively, and the pressure drop ratio falls with the increase of Reynolds number, split ratio and swirl number respectively. It is concluded that the most effective way to decrease the unit energy dissipation of hydrocyclone is to reduce swirl number or gas-liquid ratio of the mixed media.
基金supported by the Science and Technology Project of Education Department of Jiangxi Province (No.GJJ201249)。
文摘The homochiral compounds play an important role in human health and pharmaceutical industry.Currently,the chromatographic enantioseparation has become one of the most effective and practical approach to obtain pure enantiomers.Herein,the exploration of advanced materials,using as chromatographic chiral stationary phases for racemic separation,has attracted great attention.Thanks to their high enantioselectivity and controllable synthesis,the emerging chiral metal-organic frameworks (CMOFs)have been widely studied as the stationary phase in chromatographic technology.In this review,we will summarize the principles of synthetic strategies and mechanism of chiral microenvironment.In particular,the recent progress and research hotspot of CMOFs regarding as the chiral stationary phases in gas chromatography (GC),high-performance liquid chromatography (HPLC),and capillary electrochromatography (CEC),are elucidated systematically according to the published work.Last but not the least,we also highlight the challenges and perspectives of rational design of CMOFs,as well as their corresponding racemic separation.We envision that the review will provide a further understanding of CMOFs and facilitate the development of chromatographic enantioselective applications.