This paper presents a vision-based navigation framework for micro air vehicles(MAVs)operating in confined warehouse environments.To address the trade-off between low localization accuracy in mapless methods and high c...This paper presents a vision-based navigation framework for micro air vehicles(MAVs)operating in confined warehouse environments.To address the trade-off between low localization accuracy in mapless methods and high computational demands in map-based approaches,the proposed system leverages topology-aware path guidance using monocular vision.Navigation is driven by a digital instruction format(DIF)that encodes both the path index and target junction,enabling autonomous navigation without environmental modifications.The framework comprises a cascaded perception-encoding-control pipeline.For structured paths,foreground pixel density trend analysis with sliding window smoothing for robust junction recognition,while lateral proportionalintegral-derivative(PID)control ensures accurate path tracking.For geometric trajectories,the control logic incorporates L-junction triggers,fixed-angle turns,and spatial yaw correction to accommodate sharp corners and curved segments.ROS-Gazebo simulations validate the method’s effectiveness,achieving up to 94.40%junction recognition accuracy(92.01%on average),trajectory tracking errors below 0.1 m,and terminal localization deviations under 0.2 m.These results validate the method’s accuracy,stability,and suitability for computationally constrained MAV platforms in warehouse automation.展开更多
With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object si...With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis.展开更多
The performance of multi-user code to direct spreading bi-phase shift keying (DS-BPSK) direct impulse ultra wideband (UWB) systems under indoor multi-user and multi-path environment is analyzed and simulated. The ...The performance of multi-user code to direct spreading bi-phase shift keying (DS-BPSK) direct impulse ultra wideband (UWB) systems under indoor multi-user and multi-path environment is analyzed and simulated. The system output signals with Rake receiver are derived, then a simple and practical code selection scheme is given; i. e., with a large occupation to empty ratio of the repeating pulses, directly choosing those random or pseudo-random user codes with enough length and good co-relative orthogonal features will make the performance of DS-BPSK approximate the optimum and, so there is no need to carefully design the code or its type. The system multi-access performances are simulated using Gold sequence and PN codes as multi-user codes under CMI-CM4 multi-path channels. Simulation results prove that the proposed scheme is feasible.展开更多
A multi-path routing algorithm based on network coding is proposed for combating long propagation delay and high bit error rate of space information networks.On the basis of traditional multi-path routing,the algorith...A multi-path routing algorithm based on network coding is proposed for combating long propagation delay and high bit error rate of space information networks.On the basis of traditional multi-path routing,the algorithm uses a random linear network coding strategy to code data pack-ets.Code number is determined by the next hop link status and the number of current received packets sent by the upstream node together.The algorithm improves retransmission and cache mechanisms through using redundancy caused by network coding.Meanwhile,the algorithm also adopts the flow distribution strategy based on time delay to balance network load.Simulation results show that the proposed routing algorithm can effectively improve packet delivery rate,reduce packet delay,and enhance network performance.展开更多
Wireless sensor networks are widely used for its flexibility, but they also suffer from problems like limited capacity, large node number and vulnerability to security threats. In this paper, we propose a multi-path r...Wireless sensor networks are widely used for its flexibility, but they also suffer from problems like limited capacity, large node number and vulnerability to security threats. In this paper, we propose a multi-path routing protocol based on the credible cluster heads. The protocol chooses nodes with more energy remained as cluster heads at the cluster head choosing phase, and then authenticates them by the neighbor cluster heads. Using trust mechanisms it creates the credit value, and based on the credit value the multi-path cluster head routing can finally be found. The credit value is created and exchanged among the cluster heads only. Theoretical analysis combined with simulation results demonstrate that this protocol can save the resource, prolong the lifetime, and ensure the security and performance of the network.展开更多
An algorithm of traffic distribution called active multi-path routing(AMR)in active network is proposed.AMR adopts multi-path routing and applies nonlinear optimizeapproximate method to distribute network traffic amon...An algorithm of traffic distribution called active multi-path routing(AMR)in active network is proposed.AMR adopts multi-path routing and applies nonlinear optimizeapproximate method to distribute network traffic among multiple paths.It is combined to bandwidthresource allocation and the congestion restraint mechanism to avoid congestion happening and worsen.So network performance can be improved greatly.The frame of AMR includes adaptive trafficallocation model,the conception of supply bandwidth and its'allocation model,the principle ofcongestion restraint and its'model,and the implement of AMR based on multi-agents system in activenetwork.Through simulations,AMR has distinct effects on network performance.The results show AMRisa valid traffic regulation algorithm.展开更多
Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network c...Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network congestion,the low resource utilization rate,the long delay,the low reliability,and the low throughput.In order to improve the utilization efficiency and the quality of services(QoS)of cloud system,especially to solve the problem of network congestion,we propose MTSS,a multi-path traffic scheduling mechanism based on software defined networking(SDN).MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network.A heuristic traffic balancing algorithm is presented for MTSS,which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing.The experimental results show that MTSS outperforms equal-cost multi-path protocol(ECMP),by effectively reducing the packet loss rate and delay.In addition,MTSS improves the utilization efficiency,the reliability and the throughput rate of the cloud data center network.展开更多
A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay ...A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.展开更多
An algorithm for direction angle of arrival(DOA) estimation and array calibration of signals from multiple mobile users in the CDMA systems and multi-path environment was presented . The main idea is that the algorith...An algorithm for direction angle of arrival(DOA) estimation and array calibration of signals from multiple mobile users in the CDMA systems and multi-path environment was presented . The main idea is that the algorithm employs code-matched filter and model of the inter-symbol interference and multiple-access interference exactly. The correlation matrices of the received signals before and after code-matched filtering were employed to eliminate the effect of the additive white Gaussian noise, and a new mathematical problem was created, a new maximum likelihood method based on the strong law of large number was derived for DOA estimation and array calibration. Computer simulation results prove that the algorithm is effective.展开更多
Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of...Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half.展开更多
Stochastic iterative learning control(ILC)is designed for solving the tracking problem of stochastic linear systems through fading channels.Consequently,the signals used in learning control algorithms are faded in the...Stochastic iterative learning control(ILC)is designed for solving the tracking problem of stochastic linear systems through fading channels.Consequently,the signals used in learning control algorithms are faded in the sense that a random variable is multiplied by the original signal.To achieve the tracking objective,a two-dimensional Kalman filtering method is used in this study to derive a learning gain matrix varying along both time and iteration axes.The learning gain matrix minimizes the trace of input error covariance.The asymptotic convergence of the generated input sequence to the desired input value is strictly proved in the mean-square sense.Both output and input fading are accounted for separately in turn,followed by a general formulation that both input and output fading coexists.Illustrative examples are provided to verify the effectiveness of the proposed schemes.展开更多
The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning s...The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.展开更多
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
With the rapid demand for underwater optical communication(UOC), studies of UOC degradation by oceanic turbulence have attached increasing attention worldwide and become a research hot-spot in recent years. Previous s...With the rapid demand for underwater optical communication(UOC), studies of UOC degradation by oceanic turbulence have attached increasing attention worldwide and become a research hot-spot in recent years. Previous studies used a simplified and inaccurate oceanic turbulence spectrum, in which the eddy diffusivity ratio between temperature and salinity is assumed to be unity and the outer scale of turbulence is assumed to be infinite. However, both assumptions are not true in most of the actual marine environments. In this paper, based on the Rytov theory in weak turbulence, we derive analytical expressions of "the aperture-averaged scintillation index"(SI) for both plane and spherical waves, which can clearly demonstrate how SI is influenced by several key factors in UOC. Then, typical fade statistics of the UOC system in weak turbulence is discussed including the probability of fade, the expected number of fades per time, the mean fade time,signal-to-noise ratio and bit error rate. Our results show that spherical wave is preferable in the UOC system in weak turbulence compared to plane wave, and the aperture-averaged effect has a significant impact on UOC system's performance.Our results can be used to determine those key parameters for designing the UOC system over reasonable ranges.展开更多
基金supported by the Fundamental Research Grant Scheme(FRGS)(No.FRGS/1/2024/TK04/USM/02/3)funded by the Malaysian Ministry of Higher Education(MOHE).
文摘This paper presents a vision-based navigation framework for micro air vehicles(MAVs)operating in confined warehouse environments.To address the trade-off between low localization accuracy in mapless methods and high computational demands in map-based approaches,the proposed system leverages topology-aware path guidance using monocular vision.Navigation is driven by a digital instruction format(DIF)that encodes both the path index and target junction,enabling autonomous navigation without environmental modifications.The framework comprises a cascaded perception-encoding-control pipeline.For structured paths,foreground pixel density trend analysis with sliding window smoothing for robust junction recognition,while lateral proportionalintegral-derivative(PID)control ensures accurate path tracking.For geometric trajectories,the control logic incorporates L-junction triggers,fixed-angle turns,and spatial yaw correction to accommodate sharp corners and curved segments.ROS-Gazebo simulations validate the method’s effectiveness,achieving up to 94.40%junction recognition accuracy(92.01%on average),trajectory tracking errors below 0.1 m,and terminal localization deviations under 0.2 m.These results validate the method’s accuracy,stability,and suitability for computationally constrained MAV platforms in warehouse automation.
基金funded by Zhejiang Basic Public Welfare Research Project,grant number LZY24E060001supported by Guangzhou Development Zone Science and Technology(2021GH10,2020GH10,2023GH02)+1 种基金the University of Macao(MYRG2022-00271-FST)the Science and Technology Development Fund(FDCT)of Macao(0032/2022/A).
文摘With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis.
文摘The performance of multi-user code to direct spreading bi-phase shift keying (DS-BPSK) direct impulse ultra wideband (UWB) systems under indoor multi-user and multi-path environment is analyzed and simulated. The system output signals with Rake receiver are derived, then a simple and practical code selection scheme is given; i. e., with a large occupation to empty ratio of the repeating pulses, directly choosing those random or pseudo-random user codes with enough length and good co-relative orthogonal features will make the performance of DS-BPSK approximate the optimum and, so there is no need to carefully design the code or its type. The system multi-access performances are simulated using Gold sequence and PN codes as multi-user codes under CMI-CM4 multi-path channels. Simulation results prove that the proposed scheme is feasible.
基金supported by the National Natural Science Foundation of China(No.60929003)
文摘A multi-path routing algorithm based on network coding is proposed for combating long propagation delay and high bit error rate of space information networks.On the basis of traditional multi-path routing,the algorithm uses a random linear network coding strategy to code data pack-ets.Code number is determined by the next hop link status and the number of current received packets sent by the upstream node together.The algorithm improves retransmission and cache mechanisms through using redundancy caused by network coding.Meanwhile,the algorithm also adopts the flow distribution strategy based on time delay to balance network load.Simulation results show that the proposed routing algorithm can effectively improve packet delivery rate,reduce packet delay,and enhance network performance.
文摘Wireless sensor networks are widely used for its flexibility, but they also suffer from problems like limited capacity, large node number and vulnerability to security threats. In this paper, we propose a multi-path routing protocol based on the credible cluster heads. The protocol chooses nodes with more energy remained as cluster heads at the cluster head choosing phase, and then authenticates them by the neighbor cluster heads. Using trust mechanisms it creates the credit value, and based on the credit value the multi-path cluster head routing can finally be found. The credit value is created and exchanged among the cluster heads only. Theoretical analysis combined with simulation results demonstrate that this protocol can save the resource, prolong the lifetime, and ensure the security and performance of the network.
基金Supported by the National Natural Science Foun dation of China(90204008)
文摘An algorithm of traffic distribution called active multi-path routing(AMR)in active network is proposed.AMR adopts multi-path routing and applies nonlinear optimizeapproximate method to distribute network traffic among multiple paths.It is combined to bandwidthresource allocation and the congestion restraint mechanism to avoid congestion happening and worsen.So network performance can be improved greatly.The frame of AMR includes adaptive trafficallocation model,the conception of supply bandwidth and its'allocation model,the principle ofcongestion restraint and its'model,and the implement of AMR based on multi-agents system in activenetwork.Through simulations,AMR has distinct effects on network performance.The results show AMRisa valid traffic regulation algorithm.
基金supported by the National Key Research and Development Program of China(2018YFB1003702)the National Natural Science Foundation of China(61472192)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)
文摘Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network congestion,the low resource utilization rate,the long delay,the low reliability,and the low throughput.In order to improve the utilization efficiency and the quality of services(QoS)of cloud system,especially to solve the problem of network congestion,we propose MTSS,a multi-path traffic scheduling mechanism based on software defined networking(SDN).MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network.A heuristic traffic balancing algorithm is presented for MTSS,which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing.The experimental results show that MTSS outperforms equal-cost multi-path protocol(ECMP),by effectively reducing the packet loss rate and delay.In addition,MTSS improves the utilization efficiency,the reliability and the throughput rate of the cloud data center network.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments.
基金Project supported by the National Defense Pre-research Foundation
文摘An algorithm for direction angle of arrival(DOA) estimation and array calibration of signals from multiple mobile users in the CDMA systems and multi-path environment was presented . The main idea is that the algorithm employs code-matched filter and model of the inter-symbol interference and multiple-access interference exactly. The correlation matrices of the received signals before and after code-matched filtering were employed to eliminate the effect of the additive white Gaussian noise, and a new mathematical problem was created, a new maximum likelihood method based on the strong law of large number was derived for DOA estimation and array calibration. Computer simulation results prove that the algorithm is effective.
基金The authors received Sichuan Science and Technology Program(No.18YYJC1917)funding for this study.
文摘Medical image segmentation plays an important role in clinical diagnosis,quantitative analysis,and treatment process.Since 2015,U-Net-based approaches have been widely used formedical image segmentation.The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.However,the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information.More high-level information can make the segmentationmore accurate.In this paper,we propose MU-Net,a novel,multi-path upsampling convolution network to retain more high-level information.The MU-Net mainly consists of three parts:contracting path,skip connection,and multi-expansive paths.The proposed MU-Net architecture is evaluated based on three different medical imaging datasets.Our experiments show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets.At the same time,the computational efficiency is significantly improved by reducing the number of parameters by more than half.
基金supported by the National Natural Science Foundation of China(61673045)the Fundamental Research Funds for the Central Universities(XK1802-4)
文摘Stochastic iterative learning control(ILC)is designed for solving the tracking problem of stochastic linear systems through fading channels.Consequently,the signals used in learning control algorithms are faded in the sense that a random variable is multiplied by the original signal.To achieve the tracking objective,a two-dimensional Kalman filtering method is used in this study to derive a learning gain matrix varying along both time and iteration axes.The learning gain matrix minimizes the trace of input error covariance.The asymptotic convergence of the generated input sequence to the desired input value is strictly proved in the mean-square sense.Both output and input fading are accounted for separately in turn,followed by a general formulation that both input and output fading coexists.Illustrative examples are provided to verify the effectiveness of the proposed schemes.
基金Supported by the National Defense Basic Foundation of China B2420710007
文摘The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
基金supported by the fund from Xi’an Institute of Optics and Precision Mechanics。
文摘With the rapid demand for underwater optical communication(UOC), studies of UOC degradation by oceanic turbulence have attached increasing attention worldwide and become a research hot-spot in recent years. Previous studies used a simplified and inaccurate oceanic turbulence spectrum, in which the eddy diffusivity ratio between temperature and salinity is assumed to be unity and the outer scale of turbulence is assumed to be infinite. However, both assumptions are not true in most of the actual marine environments. In this paper, based on the Rytov theory in weak turbulence, we derive analytical expressions of "the aperture-averaged scintillation index"(SI) for both plane and spherical waves, which can clearly demonstrate how SI is influenced by several key factors in UOC. Then, typical fade statistics of the UOC system in weak turbulence is discussed including the probability of fade, the expected number of fades per time, the mean fade time,signal-to-noise ratio and bit error rate. Our results show that spherical wave is preferable in the UOC system in weak turbulence compared to plane wave, and the aperture-averaged effect has a significant impact on UOC system's performance.Our results can be used to determine those key parameters for designing the UOC system over reasonable ranges.