期刊文献+
共找到368,783篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-parameter optimization of machining impeller surface based on the on-machine measuring technique 被引量:4
1
作者 Gang WANG Wen-long LI +2 位作者 Fan RAO Zheng-rong HE Zhou-ping YIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第8期2000-2008,共9页
Selecting the optimal machining parameters for impeller surface is a challenging task in the automatic manufacturing industry, due to its free-form surface and deep-crooked flow channel.Existing experimental methods r... Selecting the optimal machining parameters for impeller surface is a challenging task in the automatic manufacturing industry, due to its free-form surface and deep-crooked flow channel.Existing experimental methods require lots of machining experiments and off-line tests, which may lead to high machining cost and low efficiency. This paper proposes a novel method of machining parameters optimization for an impeller based on the on-machine measuring technique. The absolute average error and standard deviation of the measured points are used to define the grey relational grade for reconstructing the objective function, and the complex problem of multi-objective optimization is simplified into a problem of single-objective optimization. Then, by comparing the values of the defined grey relational grade in a designed orthogonal experiment, the optimal combination of the machining parameters is obtained. The experiment-solving process of the objective function corresponds to the minimization of the used errors, which is advantageous to reducing the machining error. The proposed method is efficient and low-cost, since it does not require re-clamping the workpiece for off-line tests. Its effectiveness is verified by an on-machine inspection experiment of the impeller blade. 展开更多
关键词 GREY RELATIONAL grade IMPELLER SURFACE multi-parameters optimization On-machine measuring ORTHOGONAL experiment
原文传递
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
2
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
Multi-parameter joint optimization for double-strip high-speed pantographs to improve pantograph-catenary interaction quality 被引量:1
3
作者 Mengzhen Wu Xianghong Xu +3 位作者 Yongzhao Yan Yi Luo Sijun Huang Jianshan Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第1期137-147,共11页
The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary r... The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary relationship and the design of highspeed pantographs.Good pantograph-catenary coupling quality is the essential condition to ensure safe and efficient operation of high-speed train,stable and reliable current collection,and reduction in the wear of contact wires and pantograph contact strips.Among them,the dynamic parameters of high-speed pantographs are crucial to pantograph-catenary coupling quality.With the reduction of the standard deviation of the pantograph-catenary contact force as the optimization goal,multi-parameter joint optimization designs for the high-speed pantograph with two contact strips at multiple running speeds are proposed.Moreover,combining the sensitivity analysis at the optimal solutions,with the parameters and characteristics of in-service DSA380 highspeed pantograph,the optimization proposal of DSA380 was given. 展开更多
关键词 High-speed pantograph Pantograph-catenary interaction quality multi-parameter joint optimization
原文传递
Optimal multi-parameter quantum metrology for frequencies of magnetic field
4
作者 Zhenhua Long Shengshi Pang 《Chinese Physics B》 2025年第8期465-473,共9页
Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in... Multi-parameter quantum estimation has attracted considerable attention due to its broad applications.Due to the complexity of quantum dynamics,existing research places significant emphasis on estimating parameters in time-independent Hamiltonians.Here,our work makes an effort to explore multi-parameter estimation with time-dependent Hamiltonians.In particular,we focus on the discrimination of two close frequencies of a magnetic field by using a single qubit.We optimize the quantum controls by employing both traditional optimization methods and reinforcement learning to improve the precision for estimating the frequencies of the two magnetic fields.In addition to the estimation precision,we also evaluate the robustness of the optimization schemes against the shift of the control parameters.The results demonstrate that the hybrid reinforcement learning approach achieves the highest estimation precision,and exhibits superior robustness.Moreover,a fundamental challenge in multi-parameter quantum estimation stems from the incompatibility of the optimal control strategies for different parameters.We demonstrate that the hybrid control strategies derived through numerical optimization remain effective in enhancing the precision of multi-parameter estimation in spite of the incompatibilities,thereby mitigating incompatibilities between control strategies on the estimation precision.Finally,we investigate the trade-offs in estimation precision among different parameters for different scenarios,revealing the inherent challenges in balancing the optimization of multiple parameters simultaneously and providing insights into the fundamental distinction between quantum single-parameter estimation and multi-parameter estimation. 展开更多
关键词 quantum metrology multi-parameter estimation quantum control
原文传递
Multi-parameter Sensitivity Analysis and Application Research in the Robust Optimization Design for Complex Nonlinear System 被引量:4
5
作者 MA Tao ZHANG Weigang +1 位作者 ZHANG Yang TANG Ting 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期55-62,共8页
The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-d... The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design. 展开更多
关键词 complex nonlinear system global sensitivity analysis robust optimization design grouped variables
在线阅读 下载PDF
Multi-parameter optimization design, numerical simulation and performance test of mixed-flow pump impeller 被引量:5
6
作者 BING Hao CAO ShuLiang 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第9期2194-2206,共13页
On the basis of the three-dimensional design platform of the mixed-flow pump impellers, an optimization design system was developed in this paper by improving the genetic algorithm with application of both strategies ... On the basis of the three-dimensional design platform of the mixed-flow pump impellers, an optimization design system was developed in this paper by improving the genetic algorithm with application of both strategies of keeping the optimal individu- al and employing the niche. This system took the highest efficiency of the impeller as the optimization objective and employed P, a0, A0h and A0t, which could directly affect the shape and the position of the blade, as optimization parameters. In addition, loss model was used to obtain fast and accurate prediction of the impeller efficiency. The optimization results illustrated that this system had advantages such as high accuracy and fine convergence, thus to effectively improve the design of the mixed-flow pump impellers. Numerical simulation was applied to determine the internal flow fields of the impeller obtained by optimization design, and to analyze both the relative velocity and the pressure distributions. The test results demonstrated that the mixed flow pump had the highest efficiency of 87.2%, the wide and flat high efficiency operation zone, the relatively wide range of blade angle adjustment, fine cavitation performance and satisfied stability. 展开更多
关键词 mixed-flow pump IMPELLER optimization design performance test numerical simulation
原文传递
Multi-Parameter and Multi-Objective Optimization of Occupant Restraint System in Frontal Collision
7
作者 XIANG Zhongke XIANG Feifei 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第4期324-332,共9页
To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver co... To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver. 展开更多
关键词 occupant restraint system multi-objective optimization sensitivity analysis multi-islands genetic algorithms nonlinear programming quadratic line(NLPQL)algorithm
原文传递
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
8
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
9
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems 被引量:1
10
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition Global convergence
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
11
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
A survey on multi-objective,model-based,oil and gas field development optimization:Current status and future directions 被引量:1
12
作者 Auref Rostamian Matheus Bernardelli de Moraes +1 位作者 Denis Jose Schiozer Guilherme Palermo Coelho 《Petroleum Science》 2025年第1期508-526,共19页
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall... In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization. 展开更多
关键词 Derivative-free algorithms Ensemble-based optimization Gradient-based methods Life-cycle optimization Reservoir field development and management
原文传递
Physics and data-driven alternative optimization enabled ultra-low-sampling single-pixel imaging 被引量:2
13
作者 Yifei Zhang Yingxin Li +5 位作者 Zonghao Liu Fei Wang Guohai Situ Mu Ku Chen Haoqiang Wang Zihan Geng 《Advanced Photonics Nexus》 2025年第3期55-66,共12页
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul... Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection. 展开更多
关键词 single-pixel imaging deep learning alternative optimization
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
14
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
15
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 Multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Enhanced Lead and Zinc Removal via Prosopis Cineraria Leaves Powder: A Study on Isotherms and RSM Optimization 被引量:1
16
作者 Rakesh Namdeti Gaddala Babu Rao +7 位作者 Nageswara Rao Lakkimsetty Noor Mohammed Said Qahoor Naveen Prasad B.S Uma Reddy Meka Prema.P.M Doaa Salim Musallam Samhan Al-Kathiri Muayad Abdullah Ahmed Qatan Hafidh Ahmed Salim Ba Alawi 《Journal of Environmental & Earth Sciences》 2025年第1期292-305,共14页
This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Pro... This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment. 展开更多
关键词 Prosopis Cineraria LEAD ZINC Isotherms optimization
在线阅读 下载PDF
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
17
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 Particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization 被引量:1
18
作者 Yi Zheng Hao-Ran Zhang +5 位作者 Xiao-Wei Li You-Ran Zhao Zhao-Song Li Ye-Hao Hou Chao Liu Qiong-Hua Wang 《Opto-Electronic Advances》 2025年第6期4-15,共12页
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution... Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest. 展开更多
关键词 compound-eye camera ZOOM high resolution collaborative optimization
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights 被引量:1
19
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 Particle swarm optimization(PSO) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer 被引量:1
20
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 MULTI-OBJECTIVE optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部