期刊文献+
共找到315篇文章
< 1 2 16 >
每页显示 20 50 100
Higher-order expansions of powered extremes of logarithmic general error distribution
1
作者 TAN Xiao-feng LI Li-hui 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期47-54,共8页
In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of nor... In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v). 展开更多
关键词 logarithmic general error distribution convergence rate higher-order expansion powered ex-treme
在线阅读 下载PDF
Distributional expansion of maximum from logarithmic general error distribution 被引量:3
2
作者 YANG Geng LIAO Xin PENG Zuo-xiang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第2期157-164,共8页
Logarithmic general error distribution is an extension of lognormal distribution. In this paper, with optimal norming constants the higher-order expansion of distribution of partial maximum of logarithmic general erro... Logarithmic general error distribution is an extension of lognormal distribution. In this paper, with optimal norming constants the higher-order expansion of distribution of partial maximum of logarithmic general error distribution is derived. 展开更多
关键词 Extreme value distribution Higher-order expansion Logarithmic general error distribution Maximum
在线阅读 下载PDF
ASYMPTOTIC EXPANSIONS OF ZEROS FOR KRAWTCHOUK POLYNOMIALS WITH ERROR BOUNDS
3
作者 朱晓峰 李秀淳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1627-1633,共7页
Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and unif... Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds axe discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong. 展开更多
关键词 Krawtchouk polynomial asymptotic expansion ZERO error bounds
在线阅读 下载PDF
ASYMPTOTIC ERROR EXPANSIONS OF QUADRATIC SPLINE COLLOCATION SOLUTIONS FOR TWO-POINT BOUNDARY VALUE PROBLEMS
4
作者 韩国强 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1994年第2期120-125,共6页
In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, w... In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation. 展开更多
关键词 ASYMPTOTIC error expansion QUADRATIC SPLINE COLLOCATION method TWO-POINT boundary value problem Richardson’s extrapolation.
在线阅读 下载PDF
Feedback control and quantum error correction assisted quantum multi-parameter estimation
5
作者 洪海源 鲁秀娟 匡森 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期260-267,共8页
Quantum metrology provides a fundamental limit on the precision of multi-parameter estimation,called the Heisenberg limit,which has been achieved in noiseless quantum systems.However,for systems subject to noises,it i... Quantum metrology provides a fundamental limit on the precision of multi-parameter estimation,called the Heisenberg limit,which has been achieved in noiseless quantum systems.However,for systems subject to noises,it is hard to achieve this limit since noises are inclined to destroy quantum coherence and entanglement.In this paper,a combined control scheme with feedback and quantum error correction(QEC)is proposed to achieve the Heisenberg limit in the presence of spontaneous emission,where the feedback control is used to protect a stabilizer code space containing an optimal probe state and an additional control is applied to eliminate the measurement incompatibility among three parameters.Although an ancilla system is necessary for the preparation of the optimal probe state,our scheme does not require the ancilla system to be noiseless.In addition,the control scheme in this paper has a low-dimensional code space.For the three components of a magnetic field,it can achieve the highest estimation precision with only a 2-dimensional code space,while at least a4-dimensional code space is required in the common optimal error correction protocols. 展开更多
关键词 quantum multi-parameter estimation feedback control quantum error correction Heisenberg limit
原文传递
Euler-Maclaurin Expansions of Errors for Multidimensional Weakly Singular Integrals and Their Splitting Extrapolation Algorithm
6
作者 Yubin Pan Jin Huang Hongyan Liu 《Journal of Applied Mathematics and Physics》 2017年第2期252-258,共7页
In this paper, multidimensional weakly singular integrals are solved by using rectangular quadrature rules which base on quadrature rules of one dimensional weakly singular and multidimensional regular integrals with ... In this paper, multidimensional weakly singular integrals are solved by using rectangular quadrature rules which base on quadrature rules of one dimensional weakly singular and multidimensional regular integrals with their Euler-Maclaurin asymptotic expansions of the errors. The presented method is suit for solving multidimensional and singular integrals by comparing with Gauss quadrature rule. The error asymptotic expansions show that the convergence order of the initial quadrature rules is , where . The order of accuracy can reach to by using extrapolation and splitting extrapolation, where h0 is the maximum mesh width. Some numerical examples are constructed to show the efficiency of the method. 展开更多
关键词 MULTIDIMENSIONAL Weakly Singular INTEGRALS Euler-Maclaurin errorS Asymptotic expansionS SPLITTING Extrapolation
在线阅读 下载PDF
NEW ERROR EXPANSION FOR ONE-DIMENSIONAL FINITE ELEMENTS AND ULTRACONVERGENCE
7
作者 陈传淼 谢资清 刘经洪 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2005年第4期296-304,共9页
Based on an improved orthogonal expansion in an element, a new error expression of n-degree finite element approximation uh to two-point boundary value problem is derived, and then superconvergence of two order for bo... Based on an improved orthogonal expansion in an element, a new error expression of n-degree finite element approximation uh to two-point boundary value problem is derived, and then superconvergence of two order for both function and derivatives are obtained. 展开更多
关键词 有限元分析 误差扩展 正交扩展 边值问题 超收敛性
在线阅读 下载PDF
Mobile channel estimation for MU-MIMO systems using KL expansion based extrapolation 被引量:1
8
作者 Donghua Chen Hongbing Qiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期349-354,共6页
In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic su... In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity. 展开更多
关键词 channel estimation multiple input multiple output (MIMO) Karhunen-Loeve (KL) expansion minimum mean square error (MMSE).
在线阅读 下载PDF
THE CONVERGENCE FOR NODAL EXPANSION METHOD
9
作者 黄艾香 张波 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1993年第2期135-149,共15页
In this paper, we prove the convergence of the nodal expansion method, a new numerical method for partial differential equations and provide the error estimates of approximation solution.
关键词 Nodal expansion Method CONVERGENCE error Estimate. Primal Hybrid Finite Element Method.
在线阅读 下载PDF
A Log-Penalty-Based Method for Multi-Parameters Estimation with Partly Calibrated COLD Array
10
作者 Yudi Qin Xiaoying Sun 《China Communications》 SCIE CSCD 2021年第8期271-278,共8页
In this paper,we focus on the problem of joint estimation of DOA,power and polarization angle from sparse reconstruction perspective with array gain-phase errors,where a partly calibrated cocentered orthogonal loop an... In this paper,we focus on the problem of joint estimation of DOA,power and polarization angle from sparse reconstruction perspective with array gain-phase errors,where a partly calibrated cocentered orthogonal loop and dipole(COLD)array is utilized.In detailed implementations,we first combine the output of loop and dipole in second-order statistics domain to receive the source signals completely,and then we use continuous multiplication operator to achieve gain-phase errors calibration.After compensating the gain-phase errors,we construct a log-penalty-based optimization problem to approximate`0 norm and further exploit difference of convex(DC)functions decomposition to achieve DOA.With the aid of the estimated DOAs,the power and polarization angle estimation are obtained by the least squares(LS)method.By conducting numerical simulations,we show the effectiveness and superiorities of the proposed method. 展开更多
关键词 multi-parameters estimation log penalty DC functions decomposition partly calibrated COLD array gain-phase errors
在线阅读 下载PDF
ESTIMATION OF BASIS EXPANSION MODELS FOR DOUBLY SELECTIVE CHANNELS
11
作者 Liu Yingnan Gao Yonghui +1 位作者 Zhang Nu Liang Qinglin 《Journal of Electronics(China)》 2008年第1期115-119,共5页
By analyzing the relationship between Basis Expansion Model (BEM) and Doppler spectrum, this letter proposed a quasi-MMSE-based BEM estimation scheme for doubly selective channels. Based on the assumption that the bas... By analyzing the relationship between Basis Expansion Model (BEM) and Doppler spectrum, this letter proposed a quasi-MMSE-based BEM estimation scheme for doubly selective channels. Based on the assumption that the basis coefficients are approximately independent and have the same variance for the same channel tap, the quasi-MMSE estimation shows approximately optimal performance and is robust to noise. Moreover, it can avoid a high Peak-to-Average Power Ratio (PAPR) by using continuous pilots. Performance of the proposed estimation scheme has been shown with computer simulations. 展开更多
关键词 Channel estimation Doubly selective channel Basis expansion Model (BEM) Meansquare error
在线阅读 下载PDF
An Approximate Approach for Systems of Singular Volterra Integral Equations Based on Taylor Expansion
12
作者 Mohsen Didgar Alireza Vahidi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第8期145-152,共8页
In this article, an extended Taylor expansion method is proposed to estimate the solution of linear singular Volterra integral equations systems. The method is based on combining the m-th order Taylor polynomial of un... In this article, an extended Taylor expansion method is proposed to estimate the solution of linear singular Volterra integral equations systems. The method is based on combining the m-th order Taylor polynomial of unknown functions at an arbitrary point and integration method, such that the given system of singular integral equations is converted into a system of linear equations with respect to unknown functions and their derivatives. The required solutions are obtained by solving the resulting linear system. The proposed method gives a very satisfactory solution,which can be performed by any symbolic mathematical packages such as Maple, Mathematica, etc. Our proposed approach provides a significant advantage that the m-th order approximate solutions are equal to exact solutions if the exact solutions are polynomial functions of degree less than or equal to m. We present an error analysis for the proposed method to emphasize its reliability. Six numerical examples are provided to show the accuracy and the efficiency of the suggested scheme for which the exact solutions are known in advance. 展开更多
关键词 systems of singular Volterra integral equations (SSVIEs) systems of generalized Abel's integral equations error analysis Taylor expansion
原文传递
A NUMERICAL PERTURBATION EXPANSIONMETHOD FOR THE SOLUTION OF ALIENARD-TYPE INITIAL-VALUE PROBLEMWITH PERIODIC DECAYING FORCING TERM
13
作者 张荣 何雪明 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2004年第2期133-139,共7页
A numerical perturbation expansion method is developed, analysed and implemented for the numerical solution of a second-order initial-value problem. The differential equation in this problem exhibits cubic damping, a ... A numerical perturbation expansion method is developed, analysed and implemented for the numerical solution of a second-order initial-value problem. The differential equation in this problem exhibits cubic damping, a cubic restoring force and a decaying forcing-term which is periodic with constant frequency. The method is compared with the numerical method by Twizell [1]. In fact, the later is first perturbation approximate solution in the present paper. 展开更多
关键词 摄动展开 局部舍位误差 摄动量 LIENARD型初值问题 解答方法
在线阅读 下载PDF
数控机床移动工作台定位精度预测的建模、仿真及实验 被引量:1
14
作者 杨洪涛 秦鹏飞 +3 位作者 李莉 刘柄瑶 金磊 姜西祥 《机电工程》 北大核心 2025年第2期351-361,共11页
随着使用时间的延长,数控机床移动工作台会出现部件磨损、失效等现象,进而导致工作台定位精度降低。为了精确预测移动工作台的精度损失,以数控机床移动工作台为研究对象,在考虑载荷、运动速度、温度和运行时间等影响因素的基础上,建立... 随着使用时间的延长,数控机床移动工作台会出现部件磨损、失效等现象,进而导致工作台定位精度降低。为了精确预测移动工作台的精度损失,以数控机床移动工作台为研究对象,在考虑载荷、运动速度、温度和运行时间等影响因素的基础上,建立了工作台的定位误差预测模型,对工作台定位误差随时间的变化情况,进行了理论计算、仿真分析及实验验证。首先,在分析滚动直线导轨副的摩擦磨损机理和负载作用下产生的表面接触变形的基础上,建立了导轨副表面滚珠与滚道在接触载荷作用下的磨损模型,以及滚珠丝杆在电机扭矩、轴向力和温度作用下产生的扭转变形、螺距变化及热膨胀误差模型,还建立了工作台随使用时间变化的定位误差预测模型(因导轨副磨损与滚珠丝杆变形均会使工作台产生定位误差,两部分误差之和为定位精度损失预测模型);然后,开展了不同负载、运动速度、温度等因素影响下的理论计算与仿真分析;最后,在一组特定负载、速度、温度的条件下,进行了定位误差的测量实验,验证了上述预测模型的准确性。研究结果表明:在不同的因素影响作用下,仿真结果、实验结果与理论结果相比,其总体的变化趋势趋于一致,且经拟合对比分析,定位误差的仿真、实验与理论之间的最大相对误差为15.9%。该误差预测模型能够有效预测工作台的定位误差,为数控机床加工精度的预测奠定了基础。 展开更多
关键词 移动工作台运行时间 定位精度损失 定位误差模型 导轨副磨损模型 滚珠丝杆变形 热膨胀误差
在线阅读 下载PDF
基于MVCT图像引导放疗的分次间和分次内头颈部肿瘤外扩边界研究
15
作者 李宗泰 林志悦 +2 位作者 姚文燕 迟锋 许森奎 《实用肿瘤杂志》 2025年第2期167-171,共5页
目的探讨在兆伏CT(mega voltage CT,MVCT)图像引导技术下,应用螺旋断层调强放疗(helical tomotherapy,HT)治疗头颈部肿瘤时在分次间和分次内相对应的外扩边界大小。方法选取中山大学肿瘤防治中心2017年12月至2018年2月收治的10例头颈部... 目的探讨在兆伏CT(mega voltage CT,MVCT)图像引导技术下,应用螺旋断层调强放疗(helical tomotherapy,HT)治疗头颈部肿瘤时在分次间和分次内相对应的外扩边界大小。方法选取中山大学肿瘤防治中心2017年12月至2018年2月收治的10例头颈部肿瘤患者进行HT治疗,每例每周1次进行治疗前MVCT扫描,图像配准后记录分次间误差和修正摆位误差后再进行1次扫描与配准,获得残留误差数据,治疗后重新扫描与配准,得出分次内误差,再根据公式得出计划靶区(planning target volume,PTV)外扩边界MarginPTV。结果每例患者扫描5次,共50次,得到X(左右)、Y(前后)和Z(头脚)轴方向上的摆位误差。Z轴平均分次间误差为2.80 mm。分次间误差及其在线校准后的残留误差在3个方向上比较,差异均具有统计学意义(均P<0.05)。3个方向上的分次内误差与残留误差比较,差异均无统计学意义(均P>0.05)。X、Y和Z轴方向上,分次间误差的MarginPTV分别为2.279、2.447和1.805 mm,残留误差的MarginPTV为0.853、0.963和0.917 mm,分次内误差的MarginPTV为1.015、0.979和0.710 mm。结论Z轴分次间误差普遍较大。每次放疗前进行图像引导,可大幅缩小放疗计划的MarginPTV。头颈部放疗计划的MarginPTV需要综合考虑患者图像引导后残留误差和分次内误差。 展开更多
关键词 头颈部肿瘤 螺旋断层调强放疗 外扩边界 分次间误差 分次内误差
暂未订购
木梁弯曲的教学拓展与实践创新
16
作者 高颖盈 胡潇毅 《力学与实践》 2025年第3期637-642,共6页
木材具有复杂的微观结构和特殊的力学性能,理应在材料力学教学中占据一席之地,以启发学生全面掌握材料力学原理。为此,在课外进行了木梁弯曲实验的教学拓展。教师选定木材种类和横截面尺寸后,交由学生搭建适当跨度的木梁,要求其利用身... 木材具有复杂的微观结构和特殊的力学性能,理应在材料力学教学中占据一席之地,以启发学生全面掌握材料力学原理。为此,在课外进行了木梁弯曲实验的教学拓展。教师选定木材种类和横截面尺寸后,交由学生搭建适当跨度的木梁,要求其利用身边的物品构建加载和测量装置,并独立完成实验。教师根据实验设计的独立性、结果的准确性和方法的新颖性做出质量评定,并引导学生结合材料力学基本假设以及木材特性进行实验误差分析,实现完善学生知识结构、优化学生能力素质的预期目标。 展开更多
关键词 木梁 微观结构 教学拓展 基本假设 误差分析
在线阅读 下载PDF
码率兼容空间耦合LDPC码设计
17
作者 石双颖 周华 谢莉 《计算机与数字工程》 2025年第2期469-473,共5页
论文提出了一种码率兼容的空间耦合低密度奇偶校验(Spatially Coupled Low Density Parity-Check,SC-LDPC)码的构造方法,通过扩展矩阵的方式实现码率兼容。论文保持信息位不变,对校验位进行扩展,采用渐近边增长(Progres-sive Edge-Growt... 论文提出了一种码率兼容的空间耦合低密度奇偶校验(Spatially Coupled Low Density Parity-Check,SC-LDPC)码的构造方法,通过扩展矩阵的方式实现码率兼容。论文保持信息位不变,对校验位进行扩展,采用渐近边增长(Progres-sive Edge-Growth,PEG)算法生成母码矩阵,扩展矩阵采用5G中的部分矩阵进行构造。在此基础上,通过算法为矩阵中的非零元素赋值以尽可能消除短环。仿真结果表明,与PEG构造的同码率、同码长的LDPC码相比,所提出的码率兼容SC-LD-PC码译码性能有一定的提升,特别是在高码率下,编码增益提高更为明显。 展开更多
关键词 SC-LDPC码 码率兼容 矩阵扩展 误码率
在线阅读 下载PDF
面向压缩域数据盲提取的多层循环预测可逆隐藏方案
18
作者 温文媖 杨育衡 +2 位作者 罗新宇 张玉书 方玉明 《计算机学报》 北大核心 2025年第4期910-926,共17页
近年来,压缩感知(Compressive Sensing,CS)域的可逆数据隐藏已得到广泛研究。针对现有CS域可逆数据隐藏方案不能同时实现秘密信息盲提取、测量值直接可用问题,借助CS渐进恢复特性和预测误差扩展方法,本文提出一种面向压缩域数据盲提取... 近年来,压缩感知(Compressive Sensing,CS)域的可逆数据隐藏已得到广泛研究。针对现有CS域可逆数据隐藏方案不能同时实现秘密信息盲提取、测量值直接可用问题,借助CS渐进恢复特性和预测误差扩展方法,本文提出一种面向压缩域数据盲提取的多层循环预测可逆隐藏方案。该方案通过构建多层循环预测嵌入,对CS测量值进行预测,利用直方图平移(Histogram Shifting,HS)对测量值嵌入额外信息,在提取信息阶段可实现信息盲提取和测量值无损还原;此外,为提高测量值可用性,本文提出一种冗余块估计方法,优先在冗余块进行信息嵌入,相比排序前,采样率0.5时平均PSNR最高提升2.8%。该方案结合了缩略图保持加密技术,在测量值中自嵌入图像本身的敏感区域保真值,为不同权限的用户提供不同的可见区域,实现多级预览;同时利用CS的鲁棒性,对测量值外嵌入需要隐藏的秘密信息,使得在不提取秘密信息的前提下,载密测量值重建图像与测量值重建图像保持高度相似(随嵌入率提升,平均PSNR为36 dB~48 dB),保证秘密信息的隐蔽性。实验结果表明,与最新方案相比,本文提出方案能够实现大容量嵌入(0 bit~35000 bit)、秘密信息盲提取、测量值直接可用以及多级权限隐私保护。 展开更多
关键词 可逆数据隐藏 压缩感知 循环预测 盲提取 预测误差扩展
在线阅读 下载PDF
多信道光纤网络链路通信误码率自动控制方法
19
作者 高春雪 孙保海 唐明涛 《激光杂志》 北大核心 2025年第7期149-154,共6页
在多信道光纤网络链路中,不同信道间的信号可能相互干扰,引发串扰现象。且环境干扰也会导致信号传输过程中误码。高误码率会加剧数据传输错误,影响通信的准确性和可靠性。通过有效控制误码率,可以减少数据重传和纠错,降低网络负载和传... 在多信道光纤网络链路中,不同信道间的信号可能相互干扰,引发串扰现象。且环境干扰也会导致信号传输过程中误码。高误码率会加剧数据传输错误,影响通信的准确性和可靠性。通过有效控制误码率,可以减少数据重传和纠错,降低网络负载和传输延迟,提升网络整体效率。为此,提出一种多信道光纤网络链路通信误码率的自动控制方法。构建光纤网络的初始状态空间方程,计算过程噪声与观测噪声的线性关系,求得状态转移向量,并结合泰勒展开系数求得多信道光纤网络的空间状态。基于此,生成光纤链路通信的初始随机信号样本,根据光纤网络链路的初始误码率和信道中的偏置密度,通过信号在信道中的序列长度判定其是否为误码信号,并确定特征量。根据误码冗余信号的包络特征,求得误码率最低的条件函数,通过该函数调整信号带宽控制阈值,实现多信道光纤网络链路通信误码率的自动控制。实验数据证明,所提方法成功将多信道光纤网络链路通信信号幅值控制在-5 dB~4 dB之间,且信道误码率在0.8以内,表明该方法在光纤通信误码率控制方面效果显著,能够有效改善信号冗余和堵塞等问题,具有较高的实用价值。 展开更多
关键词 多信道光纤网络链路 通信误码率 泰勒展开系数 包络特征 偏置密度
原文传递
基于改进频域预测误差扩展的数字遥感图像可逆水印算法
20
作者 李国燕 梁京 高琳 《天津城建大学学报》 2025年第2期129-137,共9页
笔者提出了一种基于改进频域预测误差扩展(prediction-error expansion,PEE)的遥感图像可逆水印算法.该算法基于图像复杂度将像素分类,优先选择像素值分布平滑的区域嵌入水印.为了提高预测精度,利用频域内相邻系数之间的关系提出3系数... 笔者提出了一种基于改进频域预测误差扩展(prediction-error expansion,PEE)的遥感图像可逆水印算法.该算法基于图像复杂度将像素分类,优先选择像素值分布平滑的区域嵌入水印.为了提高预测精度,利用频域内相邻系数之间的关系提出3系数加权平均预测算法,并使用所提预测算法生成预测误差直方图,通过在直方图中应用多直方图修改嵌入策略优化了嵌入性能.仿真实验结果证明,该算法在提高了嵌入容量的同时,保证了图像的视觉质量,相较于对比算法具有更好的性能表现. 展开更多
关键词 遥感图像 可逆水印 预测误差扩展 菱形预测
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部