期刊文献+
共找到106,037篇文章
< 1 2 250 >
每页显示 20 50 100
Principal-subordinate hierarchical multi-objective programming model of initial water rights allocation 被引量:5
1
作者 Dan WU Feng-ping WU Yan-ping CHEN 《Water Science and Engineering》 EI CAS 2009年第2期105-116,共12页
The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate... The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model. 展开更多
关键词 initial water rights allocation principal-subordinate hierarchy multi-objective programming model satisfaction degree
在线阅读 下载PDF
Approach for uncertain multi-objective programming problems with correlated objective functions under C_(EV) criterion 被引量:2
2
作者 MENG Xiangfei WANG Ying +2 位作者 LI Chao WANG Xiaoyang LYU Maolong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1197-1208,共12页
An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain varia... An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach. 展开更多
关键词 uncertainty theory uncertain multi-objective programming expected-variance value criterion
在线阅读 下载PDF
New approach for uncertain random multi-objective programming problems based on C_(ESD) criterion 被引量:1
3
作者 SUN Yun WANG Ying +2 位作者 MENG Xiangfei FU Chaoqi LUO Chengkun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期619-630,共12页
To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the result... To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach. 展开更多
关键词 chance theory independent-uncertain random multi-objective programming expected value-standard derivation value criterion(C_(ESD)criterion)
在线阅读 下载PDF
MULTI-OBJECTIVE PROGRAMMING FOR AIRPORT GATE REASSIGNMENT
4
作者 李军会 陈欣 朱金福 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期209-215,共7页
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro... To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective. 展开更多
关键词 gate assignment multi-objective programming simulated annealing algorithm disruption management
在线阅读 下载PDF
MULTI-OBJECTIVE PROGRAMMING MODEL OF TROPICAL CROPS IN HAINAN ISLAND
5
作者 Zhou Zhaode(Department of Cultivation,South China College of Tropical Crops, Chanxian, Hainan 571700People’s Republic of China)Zheng Jianfei(Department of Agrometeorology,Bejing Agricultural University, Bejing 100094People’s Repulblic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1994年第Z1期48-60,共13页
According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy m... According to Hainan Island's biological characteristics, and existing structure of productivity of tropical crops and local climatic conditions, this paper carries on regional division of tropical crops by fuzzy mathematics. Based on calculation of basic parameters for tl1e formation of production, near-tem optimum models of tropical crops structure of each region was established by means of multi-objective programming, and a far-term grey programming model was set up through the above-mentioned near-term model and prediction of future parameters. Conclusion shows that the near-term programming may raise the profit by 5. 1-55.7 percent and far-tem programming by 54-90 percent, both gainingobvious economic benefits. 展开更多
关键词 Hainan Island tropical crops multi-objective programming
在线阅读 下载PDF
Estimating the Macroeconomic Costs of CO_2 Emission Reduction in China Based on Multi-objective Programming
6
作者 Ying Fan Xiaobing Zhang Lei Zhu 《Advances in Climate Change Research》 SCIE 2010年第1期27-33,共7页
This paper estimates the macroeconornic costs of CO2 emission reduction in China employing the input-output analysis with the multi-objective programming approach. The results show that the effect of reducing CO2 emis... This paper estimates the macroeconornic costs of CO2 emission reduction in China employing the input-output analysis with the multi-objective programming approach. The results show that the effect of reducing CO2 emissions on China's economy is significant. Under the present conditions, the estimated macroeconomic costs of CO2 emission reduction in 2010 for China are approximately 3,100-4,024 RMB t-1. The stronger the abatement actions, the higher the macroeconomic costs of per unit emission reduction would be. Excavation industry, oil industry, chemical industry, and metal smelting industry have high potential to abate their CO2 emissions. 展开更多
关键词 CO2 emission reduction macroeconomic cost multi-objective programming input-output analysis
在线阅读 下载PDF
Optimality and Duality on Fractional Multi-objective Programming Under Semilocal E-convexity 被引量:1
7
作者 HU Qing-jie XIA O Yun-hai CHEN Nei-ping 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第2期200-210,共11页
In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are establish... In this paper, some necessary and sufficient optimality conditions are obtained for a fractional multiple objective programming involving semilocal E-convex and related functions. Also, some dual results are established under this kind of generalized convex functions. Our results generalize the ones obtained by Preda[J Math Anal Appl, 288(2003) 365-382]. 展开更多
关键词 semilocal E-convex functions fractional multiple objective programming optimality conditions DUALITY
在线阅读 下载PDF
Compactness, Contractibility and Fixed Point Properties of the Pareto Sets in Multi-Objective Programming
8
作者 Zdravko Dimitrov Slavov Christina Slavova Evans 《Applied Mathematics》 2011年第5期556-561,共6页
This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, a... This paper presents the Pareto solutions in continuous multi-objective mathematical programming. We discuss the role of some assumptions on the objective functions and feasible domain, the relationship between them, and compactness, contractibility and fixed point properties of the Pareto sets. The authors have tried to remove the concavity assumptions on the objective functions which are usually used in multi-objective maximization problems. The results are based on constructing a retraction from the feasible domain onto the Pareto-optimal set. 展开更多
关键词 multi-objective programming PARETO-OPTIMAL Pareto-Front Compact CONTRACTIBLE Fixed Point RETRACTION
在线阅读 下载PDF
Roughly <i>B</i>-invex Multi-Objective Programming Problems
9
作者 Tarek Emam 《Open Journal of Optimization》 2012年第1期1-7,共7页
In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions fo... In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained. 展开更多
关键词 multi-objective programming Problems Roughly B-invex EFFICIENT SOLUTIONS Properly EFFICIENT SOLUTIONS
在线阅读 下载PDF
Generating Efficient Solutions in Bilevel Multi-Objective Programming Problems
10
作者 Calice Olivier Pieume Patrice Marcotte +1 位作者 Laure Pauline Fotso Patrick Siarry 《American Journal of Operations Research》 2013年第2期289-298,共10页
In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to constr... In this paper, we address bilevel multi-objective programming problems (BMPP) in which the decision maker at each level has multiple objective functions conflicting with each other. Given a BMPP, we show how to construct two artificial multiobjective programming problems such that any point that is efficient for both the two problems is an efficient solution of the BMPP. Some necessary and sufficient conditions for which the obtained result is applicable are provided. A complete procedure of the implementation of an algorithm for generating efficient solutions for the linear case of BMPP is presented. A numerical example is provided to illustrate how the algorithm operates. 展开更多
关键词 multi-objective programMING Bilevel programMING EFFICIENT Solution EFFICIENT EDGE HIERARCHICAL Systems
在线阅读 下载PDF
A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming
11
作者 Zhiqing Meng Rui Shen Min Jiang 《American Journal of Operations Research》 2014年第6期331-339,共9页
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu... In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP. 展开更多
关键词 multi-objective programming PENALTY Function Objective PARAMETERS CONSTRAINT PENALTY Parameter PARETO Weakly-Efficient Solution
在线阅读 下载PDF
Optimality for Multi-Objective Programming Involving Arcwise Connected d-Type-I Functions
12
作者 Guolin Yu Min Wang 《American Journal of Operations Research》 2011年第4期243-248,共6页
This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected... This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem. 展开更多
关键词 multi-objective programming Pareto Efficient Solution Arcwise Connected d-Type-I FUNCTIONS OPTIMALITY Conditions Duality
在线阅读 下载PDF
METHOD OF CENTERS ALGORITHM FORMULTI-OBJECTIVE PROGRAMMING PROBLEMS
13
作者 Tarek Emam 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1128-1142,共15页
In this paper, we consider a method of centers for solving multi-objective programming problems, where the objective functions involved are concave functions and the set of feasible points is convex. The algorithm is ... In this paper, we consider a method of centers for solving multi-objective programming problems, where the objective functions involved are concave functions and the set of feasible points is convex. The algorithm is defined so that the sub-problems that must be solved during its execution may be solved by finite-step procedures. Conditions are given under which the algorithm generates sequences of feasible points and constraint multiplier vectors that have accumulation points satisfying the KKT conditions. Finally, we establish convergence of the proposed method of centers algorithm for solving multiobjective programming problems. 展开更多
关键词 method of centers multi-objective CONVERGENCE approximated efficient solution
在线阅读 下载PDF
Selecting China's strategic petroleum reserve sites by multi-objective programming model
14
作者 Hui Li Ren-Jin Sun +3 位作者 Kang-Yin Dong Xiu-Cheng Dong Zhong-Bin Zhou Xia Leng 《Petroleum Science》 SCIE CAS CSCD 2017年第3期622-635,共14页
An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the... An important decision for policy makers is selecting strategic petroleum reserve sites. However, policy makers may not choose the most suitable and efficient locations for strategic petroleum reserve(SPR) due to the complexity in the choice of sites. This paper proposes a multi-objective programming model to determine the optimal locations for China's SPR storage sites. This model considers not only the minimum response time but also the minimum transportation cost based on a series of reasonable assumptions and constraint conditions. The factors influencing SPR sites are identified to determine potential demand points and candidate storage sites. Estimation and suggestions are made for the selection of China's future SPR storage sites based on the results of this model. When the number of petroleum storage sites is less than or equals 25 and the maximum capacity of storage sites is restricted to 10 million tonnes, the model's result best fit for the current layout scheme selected thirteen storage sites in four scenarios. Considering the current status of SPR in China,Tianjin, Qingdao, Dalian, Daqing and Zhanjiang, Chengdu,Xi'an, and Yueyang are suggested to be the candidate locations for the third phase of the construction plan. The locations of petroleum storage sites suggested in this work could be used as a reference for decision makers. 展开更多
关键词 Strategic petroleum reserve Storage siteselection multi-objective modeling China
原文传递
Multi-objective Programming and Social Welfare Analysis of Rural–urban Land Conversion Decision-making
15
作者 Song Min Zhang Anlu 《Chinese Journal of Population,Resources and Environment》 北大核心 2008年第4期65-71,共7页
Rural-urban land conversion is an inevitable phenomenon in urbanization arid industrialization. And the decision-making issue about this conversion is multi-objective because the social decision maker (the whole of c... Rural-urban land conversion is an inevitable phenomenon in urbanization arid industrialization. And the decision-making issue about this conversion is multi-objective because the social decision maker (the whole of central government and local authority) has to integrate the requirements of different interest groups (rural collective economic organizations, peasants, urban land users and the ones affected indirectly) and harmonize the sub-objects (economic, social and ecological outcomes) of this land allocation process. This paper established a multi-objective programming model for rural-urban land conversion decision-making and made some social welfare analysis correspondingly. Result shows that the general object of rural-urban land conversion decision-making is to reach the optimal level of social welfare in a certain state of resources allocation, while the preference of social decision makers and the value judgment of interest groups are two crucial factors which determine the realization of the rural-urban land conversion decision-making objects. 展开更多
关键词 ntral-urban land conversion DECISION-MAKING multiobjective programming social welfare
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
16
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
A Surrogate-assisted Multi-objective Grey Wolf Optimizer for Empty-heavy Train Allocation Considering Coordinated Line Utilization Balance 被引量:1
17
作者 Zhigang Du Shaoquan Ni +1 位作者 Jeng-Shyang Pan Shuchuan Chu 《Journal of Bionic Engineering》 2025年第1期383-397,共15页
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc... This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector. 展开更多
关键词 Surrogate-assisted model Grey wolf optimizer multi-objective optimization Empty-heavy train allocation
在线阅读 下载PDF
Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method
18
作者 Suliang Ma Zeqing Meng +1 位作者 Mingxuan Chen Yuan Jiang 《Energy Engineering》 EI 2025年第1期63-84,共22页
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio... In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems. 展开更多
关键词 Electro-hydrogen system multi-objective optimization standardization method hybrid energy storage system
在线阅读 下载PDF
PolyDiffusion:AMulti-Objective Optimized Contour-to-Image Diffusion Framework
19
作者 Yuzhen Liu Jiasheng Yin +3 位作者 Yixuan Chen Jin Wang Xiaolan Zhou Xiaoliang Wang 《Computers, Materials & Continua》 2025年第11期3965-3980,共16页
Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controll... Multi-instance image generation remains a challenging task in the field of computer vision.While existing diffusionmodels demonstrate impressive fidelity in image generation,they often struggle with precisely controlling each object’s shape,pose,and size.Methods like layout-to-image and mask-to-image provide spatial guidance but frequently suffer from object shape distortion,overlaps,and poor consistency,particularly in complex scenes with multiple objects.To address these issues,we introduce PolyDiffusion,a contour-based diffusion framework that encodes each object’s contour as a boundary-coordinate sequence,decoupling object shapes and positions.This approach allows for better control over object geometry and spatial positioning,which is critical for achieving high-quality multiinstance generation.We formulate the training process as a multi-objective optimization problem,balancing three key objectives:a denoising diffusion loss to maintain overall image fidelity,a cross-attention contour alignment loss to ensure precise shape adherence,and a reward-guided denoising objective that minimizes the Fréchet distance to real images.In addition,the Object Space-Aware Attention module fuses contour tokens with visual features,while a prior-guided fusion mechanism utilizes inter-object spatial relationships and class semantics to enhance consistency across multiple objects.Experimental results on benchmark datasets such as COCO-Stuff and VOC-2012 demonstrate that PolyDiffusion significantly outperforms existing layout-to-image and mask-to-image methods,achieving notable improvements in both image quality and instance-level segmentation accuracy.The implementation of Poly Diffusion is available at https://github.com/YYYYYJS/PolyDiffusion(accessed on 06 August 2025). 展开更多
关键词 Diffusion models multi-object generation multi-objective optimization contour-to-image
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
20
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部