期刊文献+
共找到668篇文章
< 1 2 34 >
每页显示 20 50 100
A Region Enhanced Discrete Multi-Objective Fireworks Algorithm for Low-Carbon Vehicle Routing Problem 被引量:1
1
作者 Xiaoning Shen Jiaqi Lu +2 位作者 Xuan You Liyan Song Zhongpei Ge 《Complex System Modeling and Simulation》 2022年第2期142-155,共14页
A constrained multi-objective optimization model for the low-carbon vehicle routing problem(VRP)is established.A carbon emission measurement method considering various practical factors is introduced.It minimizes both... A constrained multi-objective optimization model for the low-carbon vehicle routing problem(VRP)is established.A carbon emission measurement method considering various practical factors is introduced.It minimizes both the total carbon emissions and the longest time consumed by the sub-tours,subject to the limited number of available vehicles.According to the characteristics of the model,a region enhanced discrete multi-objective fireworks algorithm is proposed.A partial mapping explosion operator,a hybrid mutation for adjusting the sub-tours,and an objective-driven extending search are designed,which aim to improve the convergence,diversity,and spread of the non-dominated solutions produced by the algorithm,respectively.Nine low-carbon VRP instances with different scales are used to verify the effectiveness of the new strategies.Furthermore,comparison results with four state-of-the-art algorithms indicate that the proposed algorithm has better performance of convergence and distribution on the low-carbon VRP.It provides a promising scalability to the problem size. 展开更多
关键词 vehicle routing problem carbon emission multi-objective optimization fireworks algorithm region enhanced
原文传递
A Review of the Evolution of Multi-Objective Evolutionary Algorithms
2
作者 Thomas Hanne Mohammad Jahani Moghaddam 《Computers, Materials & Continua》 2025年第12期4203-4236,共34页
Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review exp... Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review explores the historical development of MOEAs,beginning with foundational concepts in multi-objective optimization,basic types of MOEAs,and the evolution of Pareto-based selection and niching methods.Further advancements,including decom-position-based approaches and hybrid algorithms,are discussed.Applications are analyzed in established domains such as engineering and economics,as well as in emerging fields like advanced analytics and machine learning.The significance of MOEAs in addressing real-world problems is emphasized,highlighting their role in facilitating informed decision-making.Finally,the development trajectory of MOEAs is compared with evolutionary processes,offering insights into their progress and future potential. 展开更多
关键词 multi-objective optimization evolutionary algorithms Pareto-based selection decomposition-based methods advanced analytics
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
3
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
4
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
5
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization NSGA-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
6
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 multi-objective optimization chef-based optimization algorithm(CBOA) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
Back analysis of rock mass parameters in mechanized twin tunnels based on coupled auto machine learning and multi-objective optimization algorithm
7
作者 Chengwen Wang Xiaoli Liu +4 位作者 Jiubao Li Enzhi Wang Nan Hu Wenli Yao Zhihui He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7038-7055,共18页
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache... Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations. 展开更多
关键词 Back analysis of rock parameters Auto machine learning multi-objective optimization algorithm Mechanized twin tunnels Parametric modeling
在线阅读 下载PDF
An Improved Multi-objective Artificial Hummingbird Algorithm for Capacity Allocation of Supercapacitor Energy Storage Systems in Urban Rail Transit
8
作者 Xin Wang Jian Feng Yuxin Qin 《Journal of Bionic Engineering》 2025年第2期866-883,共18页
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved... To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains. 展开更多
关键词 multi-objective artificial hummingbird algorithm Tent mapping based on random variables Urban rail transit Supercapacitor energy storage systems Capacity allocation
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
9
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
Parametric Optimization Design of Aircraft Based on Hybrid Parallel Multi-objective Tabu Search Algorithm 被引量:7
10
作者 邱志平 张宇星 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期430-437,共8页
For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search ... For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm. 展开更多
关键词 aircraft design conceptual design multi-objective optimization tabu search genetic algorithm Pareto optimal
原文传递
Robust Airfoil Optimization with Multi-objective Estimation of Distribution Algorithm 被引量:7
11
作者 钟小平 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2008年第4期289-295,共7页
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou... A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number. 展开更多
关键词 airfoil robust design multi-objective estimation of distribution algorithm uncertain environment drag FLUCTUATION
在线阅读 下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
12
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
暂未订购
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
13
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
在线阅读 下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:32
14
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 Evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular Pareto fronts
在线阅读 下载PDF
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:14
15
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
在线阅读 下载PDF
Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism 被引量:9
16
作者 Sun Yijie Shen Gongzhang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第6期540-549,共10页
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm ... To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front. 展开更多
关键词 multi-objective optimization genetic algorithms DIVERSITY HYBRIDIZATION CROSSOVER
原文传递
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
17
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
在线阅读 下载PDF
Sequencing Mixed-model Production Systems by Modified Multi-objective Genetic Algorithms 被引量:5
18
作者 WANG Binggang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期537-546,共10页
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul... As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm. 展开更多
关键词 mixed-model production system SEQUENCING parallel machine BUFFERS multi-objective genetic algorithm multi-objective simulated annealing algorithm
在线阅读 下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
19
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
Application of Improved Multi-Objective Ant Colony Optimization Algorithm in Ship Weather Routing 被引量:10
20
作者 ZHANG Guangyu WANG Hongbo +2 位作者 ZHAO Wei GUAN Zhiying LI Pengfei 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第1期45-55,共11页
This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation... This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation safety,fuel consumption,and sailing time.Here the improvement of the ACO algorithm is mainly reflected in two aspects.First,to make the classical ACO algorithm more suitable for long-distance ship weather routing and plan a smoother route,the basic parameters of the algorithm are improved,and new control factors are introduced.Second,to improve the situation of too few Pareto non-dominated solutions generated by the algorithm for solving multi-objective problems,the related operations of crossover,recombination,and mutation in the genetic algorithm are introduced in the improved ACO algorithm.The final simulation results prove the effectiveness of the improved algorithm in solving multi-objective weather routing optimization problems.In addition,the black-box model method was used to study the ship fuel consumption during a voyage;the model was constructed based on an artificial neural network.The parameters of the neural network model were refined repeatedly through the historical navigation data of the test ship,and then the trained black-box model was used to predict the future fuel consumption of the test ship.Compared with other fuel consumption calculation methods,the black-box model method showed higher accuracy and applicability. 展开更多
关键词 multi-objective optimization weather routing ACO algorithm fuel consumption
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部