期刊文献+
共找到438篇文章
< 1 2 22 >
每页显示 20 50 100
Robust multi-objective optimization of rolling schedule for tandem cold rolling based on evolutionary direction differential evolution algorithm 被引量:6
1
作者 Yong Li Lei Fang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第8期795-802,共8页
According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has som... According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has some uncertainty during the rolling process,ignoring which will cause poor robustness of rolling schedule.In order to solve this problem,a robust multi-objective optimization model of rolling schedule for tandem cold rolling was established.A differential evolution algorithm based on the evolutionary direction was proposed.The algorithm calculated the horizontal angle of the vector,which was used to choose mutation vector.The chosen vector contained converging direction and it changed the random mutation operation in differential evolution algorithm.Efficiency of the proposed algorithm was verified by two benchmarks.Meanwhile,in order to ensure that delivery thicknesses have descending order like actual rolling schedule during evolution,a modified Latin Hypercube Sampling process was proposed.Finally,the proposed algorithm was applied to the model above.Results showed that profile was improved and rolling energy consumption was reduced compared with the actual rolling schedule.Meanwhile,robustness of solutions was ensured. 展开更多
关键词 Robust multi-objective optimization Rolling schedule evolutionary direction Horizontal angle Mutation vector
原文传递
A Review of the Evolution of Multi-Objective Evolutionary Algorithms
2
作者 Thomas Hanne Mohammad Jahani Moghaddam 《Computers, Materials & Continua》 2025年第12期4203-4236,共34页
Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review exp... Multi-Objective Evolutionary Algorithms(MOEAs)have significantly advanced the domain of MultiObjective Optimization(MOO),facilitating solutions for complex problems with multiple conflicting objectives.This review explores the historical development of MOEAs,beginning with foundational concepts in multi-objective optimization,basic types of MOEAs,and the evolution of Pareto-based selection and niching methods.Further advancements,including decom-position-based approaches and hybrid algorithms,are discussed.Applications are analyzed in established domains such as engineering and economics,as well as in emerging fields like advanced analytics and machine learning.The significance of MOEAs in addressing real-world problems is emphasized,highlighting their role in facilitating informed decision-making.Finally,the development trajectory of MOEAs is compared with evolutionary processes,offering insights into their progress and future potential. 展开更多
关键词 multi-objective optimization evolutionary algorithms Pareto-based selection decomposition-based methods advanced analytics
在线阅读 下载PDF
COVID-19 emergency decision-making using q-rung linear diophantine fuzzy set,differential evolutionary and evidential reasoning techniques
3
作者 G Punnam Chander Sujit Das 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期182-206,共25页
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r... In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments. 展开更多
关键词 COVID-19 q-rung linear diophantine fuzzy set differential evolutionary evidential reasoning DECISION-MAKING
暂未订购
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:14
4
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
在线阅读 下载PDF
Multi-objective optimization of p-xylene oxidation process using an improved self-adaptive differential evolution algorithm 被引量:1
5
作者 Lili Tao Bin Xu +1 位作者 Zhihua Hu Weimin Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期983-991,共9页
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi... The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality. 展开更多
关键词 p-Xylene oxidation Operation condition optimization multi-objective optimization Self-adaptive differential evolution
在线阅读 下载PDF
Multi-objective Optimization of Differential Steering System of Electric Vehicle with Motorized Wheels
6
作者 赵万忠 王春燕 +2 位作者 段婷婷 叶嘉冀 周协 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期99-103,共5页
A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,... A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility. 展开更多
关键词 electric vehicle with motorized wheels differential steering multi-island genetic algorithm multi-objective
在线阅读 下载PDF
Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule 被引量:2
7
作者 傅武军 朱昌明 叶庆泰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期204-207,共4页
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf... The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method. 展开更多
关键词 integrated design multi-objective optimization evolutionary strategy dynamic weighting schedule suspension system
在线阅读 下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:32
8
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular Pareto fronts
在线阅读 下载PDF
Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization 被引量:6
9
作者 Ye Tian Haowen Chen +3 位作者 Haiping Ma Xingyi Zhang Kay Chen Tan Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1801-1817,共17页
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a... Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs. 展开更多
关键词 Conjugate gradient differential evolution evolutionary computation large-scale multi-objective optimization mathematical programming
在线阅读 下载PDF
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
10
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
在线阅读 下载PDF
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses 被引量:6
11
作者 Wen-Jing Hong Peng Yang Ke Tang 《International Journal of Automation and computing》 EI CSCD 2021年第2期155-169,共15页
Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged a... Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed. 展开更多
关键词 Large-scale multi-objective optimization high-dimensional search space evolutionary computation evolutionary algorithms SCALABILITY
原文传递
A Fast Clustering Based Evolutionary Algorithm for Super-Large-Scale Sparse Multi-Objective Optimization 被引量:8
12
作者 Ye Tian Yuandong Feng +1 位作者 Xingyi Zhang Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1048-1063,共16页
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the ... During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs. 展开更多
关键词 evolutionary computation fast clustering sparse multi-objective optimization super-large-scale optimization
在线阅读 下载PDF
Evolutionary Multi-objective Portfolio Optimization in Practical Context 被引量:5
13
作者 S.C.Chiam A.Al Mamum 《International Journal of Automation and computing》 EI 2008年第1期67-80,共14页
This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search pro... This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search process. The former is essential to enhance the realism of the classical mean-variance model proposed by Harry Markowitz, since portfolio managers often face a number of realistic constraints arising from business and industry regulations, while the latter reflects the fact that portfolio managers are ultimately interested in specific regions or points along the efficient frontier during the actual execution of their investment orders. For the former, this paper proposes an order-based representation that can be easily extended to handle various realistic constraints like floor and ceiling constraints and cardinality constraint. An experimental study, based on benchmark problems obtained from the OR-library, demonstrates its capability to attain a better approximation of the efficient frontier in terms of proximity and diversity with respect to other conventional representations. The experimental results also illustrated its viability and practicality in handling the various realistic constraints. A simple strategy to incorporate preferences into the multi-objective optimization process is highlighted and the experimental study demonstrates its capability in driving the evolutionary search towards specific regions of the efficient frontier. 展开更多
关键词 evolutionary computation multi-objective optimization portfolio optimization preference-based multi-objective optimization constraint handling
在线阅读 下载PDF
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
14
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Evolutionary Multitasking With Global and Local Auxiliary Tasks for Constrained Multi-Objective Optimization 被引量:5
15
作者 Kangjia Qiao Jing Liang +3 位作者 Zhongyao Liu Kunjie Yu Caitong Yue Boyang Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1951-1964,共14页
Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-obj... Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA. 展开更多
关键词 Constrained multi-objective optimization evolutionary multitasking(EMT) global auxiliary task knowledge transfer local auxiliary task
在线阅读 下载PDF
Multi-object optimization design for differential and grading toothed roll crusher using a genetic algorithm 被引量:12
16
作者 ZHAO La-la WANG Zhong-bin ZANG Feng 《Journal of China University of Mining and Technology》 EI 2008年第2期316-320,共5页
Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for th... Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved. 展开更多
关键词 differential and grading toothed roll crusher crank-rocker mechanism genetic algorithm multi-object optimization
在线阅读 下载PDF
Multi-objective evolutionary optimization for geostationary orbit satellite mission planning 被引量:4
17
作者 Jiting Li Sheng Zhang +1 位作者 Xiaolu Liu Renjie He 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期934-945,共12页
In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide... In the past few decades, applications of geostationary orbit (GEO) satellites have attracted increasing attention, and with the development of optical technologies, GEO optical satellites have become popular worldwide. This paper proposes a general working pattern for a GEO optical satellite, as well as a target observation mission planning model. After analyzing the requirements of users and satellite control agencies, two objectives are simultaneously considered: maximization of total profit and minimization of satellite attitude maneuver angle. An NSGA-II based multi-objective optimization algorithm is proposed, which contains some heuristic principles in the initialization phase and mutation operator, and is embedded with a traveling salesman problem (TSP) optimization. The validity and performance of the proposed method are verified by extensive numerical simulations that include several types of point target distributions. 展开更多
关键词 geostationary orbit (GEO) satellitemission planning multi-objective optimization evolutionary genetic
在线阅读 下载PDF
Two-to-one differential game via improved MOGWO 被引量:1
18
作者 BAI Yu ZHOU Di +2 位作者 ZHANG Bolun HE Zhen HE Ping 《Journal of Systems Engineering and Electronics》 2025年第1期233-255,共23页
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ... When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage. 展开更多
关键词 differential game improved multi-objective grey wolf optimization(IMOGWO) cooperative pursuit optimal game point
在线阅读 下载PDF
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:2
19
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 multi-objective flexible job shop scheduling Pareto archive set collaborative evolutionary crowd similarity
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
20
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部