期刊文献+
共找到531,394篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-objective design optimization of composite submerged cylindrical pressure hull for minimum buoyancy and maximum buckling load capacity 被引量:5
1
作者 Muhammad Imran Dong-yan Shi +3 位作者 Li-li Tong Ahsan Elahi Hafiz Muhammad Waqas Muqeem Uddin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1190-1206,共17页
This paper presents the design optimization of composite submersible cylindrical pressure hull subjected to 3 MPa hydrostatic pressure.The design optimization study is conducted for cross-ply layups[0_(s)/90_(t)/0_(u)... This paper presents the design optimization of composite submersible cylindrical pressure hull subjected to 3 MPa hydrostatic pressure.The design optimization study is conducted for cross-ply layups[0_(s)/90_(t)/0_(u)],[0_(s)/90_(t)/0_(u)]s,[0_(s)/90_(t)]s and[90_(s)/0_(t)]s considering three uni-directional composites,i.e.Carbon/Epoxy,Glass/Epoxy,and Boron/Epoxy.The optimization study is performed by coupling a Multi-Objective Genetic Algorithm(MOGA)and Analytical Analysis.Minimizing the buoyancy factor and maximizing the buckling load factor are considered as the objectives of the optimization study.The objectives of the optimization are achieved under constraints on the Tsai-Wu,Tsai-Hill and Maximum Stress composite failure criteria and on buckling load factor.To verify the optimization approach,optimization of one particular layup configuration is also conducted in ANSYS with the same objectives and constraints. 展开更多
关键词 multi-objective genetic algorithm Optimization Composite submersible pressure hull Thin shell Material failure Shell buckling
在线阅读 下载PDF
Multi-objective Design of Blending Fuel by Intelligent Optimization Algorithms
2
作者 Ruichen Liu Cong Li +2 位作者 Li Wang Xiangwen Zhang Guozhu Li 《Transactions of Tianjin University》 EI CAS 2024年第3期221-237,共17页
Fuel design is a complex multi-objective optimization problem in which facile and robust methods are urgently demanded.Herein,a complete workflow for designing a fuel blending scheme is presented,which is theoreticall... Fuel design is a complex multi-objective optimization problem in which facile and robust methods are urgently demanded.Herein,a complete workflow for designing a fuel blending scheme is presented,which is theoretically supported,efficient,and reliable.Based on the data distribution of the composition and properties of the blending fuels,a model of polynomial regression with appropriate hypothesis space was established.The parameters of the model were further optimized by different intelligence algorithms to achieve high-precision regression.Then,the design of a blending fuel was described as a multi-objective optimization problem,which was solved using a Nelder–Mead algorithm based on the concept of Pareto domination.Finally,the design of a target fuel was fully validated by experiments.This study provides new avenues for designing various blending fuels to meet the needs of next-generation engines. 展开更多
关键词 multi-objective optimization Machine learning Blending fuel
在线阅读 下载PDF
Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications
3
作者 Yuan GAO Tao YANG +3 位作者 Serhiy BOZHKO Pat WHEELER Tomislav DRAGICEVIC Chris GERADA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期233-246,共14页
This study uses the Neural Network(NN)technique to optimize design of surfacemounted Permanent Magnet Synchronous Motors(PMSMs)for More-Electric Aircraft(MEA)applications.The key role of NN is to provide dedicated cor... This study uses the Neural Network(NN)technique to optimize design of surfacemounted Permanent Magnet Synchronous Motors(PMSMs)for More-Electric Aircraft(MEA)applications.The key role of NN is to provide dedicated correction factors for the analytical PMSM mass and loss estimation within the entire design space.Based on that,a globally optimal design can be quickly obtained.Matching the analytical estimation with Finite-Element Analysis(FEA)is the main research target of training the NN.Conventional analytical formulae serve as the basis of this study,but they are prone to loss accuracy(especially for a large design space)due to their assumptions and simplifications.With the help of the trained NNs,the analytical motor model can give an estimation as accurate as the FEA but with super less time during the optimization process.The Average Correction Factor(ACF)approach is regarded as the comparison method to demonstrate the excellent performance of the proposed NN model.Furthermore,a NN aided three-stage-sevenstep optimization methodology is proposed.Finally,a Pole-10-Slot-12 PMSM case study is given to demonstrate the feasibility and gain of the NN aided multi-objective optimization approach.In this case,the NN aided analytical model can generate one motor design in 0.04 s while it takes more than 1 min for the used FEA model. 展开更多
关键词 design and optimization Loss estimation Mean Length per Turn(MLT) More-Electric Aircraft(MEA) Neural Network(NN) Permanent Magnet Synchronous Motor(PMSM)
原文传递
Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks
4
作者 Asal Jameel Khudhair Amenah Dahim Abbood 《Computers, Materials & Continua》 2026年第1期1453-1483,共31页
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r... Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification. 展开更多
关键词 multi-objective optimization evolutionary algorithms community detection HEURISTIC METAHEURISTIC hybrid social network MODELS
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
5
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
6
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
7
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization NSGA-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
Designing Load-Bearing Bio-Inspired Materials for Simultaneous Static Properties and Dynamic Damping:Multi-Objective Optimization for Micro-Structure
8
作者 Bo Dong Yunfei Jia Wei Wang 《Chinese Journal of Mechanical Engineering》 2025年第2期247-261,共15页
Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-i... Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-inspired materials which have excellent properties not present in conventional composites.To create such materials with desirable mechanical properties,the optimum structural parameters combination must be selected.Moreover,the optimal design of bio-inspired composites needs to take into account the trade-offs between various mechanical properties.In this paper,multi-objective optimization models were developed using structural parameters as design variables and mechanical properties as optimization objectives,including stiffness,strength,toughness,and dynamic damping.Using the NSGA-II optimization algorithm,a set of optimal solutions were solved.Additionally,three different structures in natural nacre were introduced in order to utilize the better structure when design bio-inspired materials.The range of optimal solutions that obtained using results from previous research were examined and explained why this collection of optimal solution ranges is better.Also,optimal solutions were compared with the structural features and mechanical properties of real nacre and artificial biomimetic composites to validate our models.Finally,the optimum design strategies can be obtained for nacre-like composites.Our research methodically proposes an optimization method for achieving load-bearing bio-inspired materials with excellent properties and creates a set of optimal solutions from which designers can select the one that best suits their preferences,allowing the fabricated materials to demonstrate preferred performance. 展开更多
关键词 Load-bearing bio-inspired composites Staggered structure multi-objective optimization
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
9
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
10
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 multi-objective optimization chef-based optimization algorithm(CBOA) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
Multi-objective design framework under uncertainties for strengthening tubular truss by partially filling with grout
11
作者 Yifei WANG Yuguang FU Lewei TONG 《Frontiers of Structural and Civil Engineering》 2025年第11期1824-1842,共19页
Due to the growing needs of strengthening steel tubular truss,a new method for enhancing tubular joints by partially filling the chord with grout is proposed.However,the strengthening design of a whole truss is a chal... Due to the growing needs of strengthening steel tubular truss,a new method for enhancing tubular joints by partially filling the chord with grout is proposed.However,the strengthening design of a whole truss is a challenging task,mainly because of multiple design objectives and various fabrication uncertainties.Current practice based on empirical or simple rule-based strategies is not able to handle the task.To address this challenge,a design framework for tubular truss strengthening is developed.The proposed framework can reduce the maximum deflection,improve the load capacities of the truss,and minimize the usage of grout.Furthermore,it considers geometric and modeling uncertainties through Monte Carlo simulation and predict intervals,thereby preventing over-idealization during practical optimization.To demonstrate the proposed design framework,a comparative structural analysis was conducted on a typical Warren truss between pre-and post-optimal strengthen.The results show that,by building upon the Machine Learning models,the proposed framework can produce an effective strengthening scheme.After considering uncertainties in optimization,some idealized samples are filtered out,resulting in a more practical strengthening scheme.The proposed framework is versatile and can be applied to other similar optimal strengthening designs with minimal additional effort. 展开更多
关键词 tubular truss strengthening design framework machine learning model fabrication uncertainties structural analysis
原文传递
Parametric Optimization Design of Aircraft Based on Hybrid Parallel Multi-objective Tabu Search Algorithm 被引量:7
12
作者 邱志平 张宇星 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期430-437,共8页
For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search ... For dealing with the multi-objective optimization problems of parametric design for aircraft, a novel hybrid parallel multi-objective tabu search (HPMOTS) algorithm is used. First, a new multi-objective tabu search (MOTS) algorithm is proposed. Comparing with the traditional MOTS algorithm, this proposed algorithm adds some new methods such as the combination of MOTS algorithm and "Pareto solution", the strategy of "searching from many directions" and the reservation of good solutions. Second, this article also proposes the improved parallel multi-objective tabu search (PMOTS) algorithm. Finally, a new hybrid algorithm--HPMOTS algorithm which combines the PMOTS algorithm with the non-dominated sorting-based multi-objective genetic algorithm (NSGA) is presented. The computing results of these algorithms are compared with each other and it is shown that the optimal result can be obtained by the HPMOTS algorithm and the computing result of the PMOTS algorithm is better than that of MOTS algorithm. 展开更多
关键词 aircraft design conceptual design multi-objective optimization tabu search genetic algorithm Pareto optimal
原文传递
A multi-objective design method for seismic retrofitting of existing reinforced concrete frames using pin-supported rocking walls 被引量:1
13
作者 Yue CHEN Rong XU +1 位作者 Hao WU Tao SHENG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第9期1089-1103,共15页
Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attention... Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attentions to researchers recently.However,it is still a challenge that how to determine the stiffness demand of PWs and assign the value of the drift concentration factor(DCF)for entire systems rationally and efficiently.In this paper,a design method has been exploited for seismic retrofitting of existing RFs using PWs(RF-PWs)via a multi-objective evolutionary algorithm.Then,the method has been investigated and verified through a practical project.Finally,a parametric analysis was executed to exhibit the strengths and working mechanism of the multi-objective design method.To sum up,the findings of this investigation show that the method furnished in this paper is feasible,functional and can provide adequate information for determining the stiffness demand and the value of the DCFfor PWs.Furthermore,it can be applied for the preliminary design of these kinds of structures. 展开更多
关键词 pin-supported rocking wall reinforced concrete frame seismic retrofit stiffness demand drift concentration factor multi-objective design genetic algorithm Pareto optimal solution
原文传递
MULTI-OBJECTIVE SHAPE DESIGN IN AERODYNAMICS USING GAME STRATEGY 被引量:1
14
作者 唐智礼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期195-199,共5页
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co... Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method. 展开更多
关键词 Game theory multi-objective optimization aerodynamic design constrained optimal control theory
在线阅读 下载PDF
A method of multi-objective reliability tolerance design for electronic circuits 被引量:7
15
作者 Zhai Guofu Zhou Yuege +1 位作者 Ye Xuerong Hu Bo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期161-170,共10页
Tolerance design plays an important role in reliability design for electronic circuits. The traditional method only focuses on the consistency of output response. It is not able to meet the needs of increasing develop... Tolerance design plays an important role in reliability design for electronic circuits. The traditional method only focuses on the consistency of output response. It is not able to meet the needs of increasing development of electronic products. This paper researches the state of related fields and proposes a method of multi-objective reliability tolerance design. The characteristics of output response and operating stresses on critical components are both defined as design objectives. Critical components and their operating stresses are determined by failure mode and effect analysis (FMEA) and fault tree analysis (FTA). Sensitivity analysis is carried out to determine sensitive parameters that affect the design objectives significantly. Monte Carlo and worst-case analysis are utilized to explore the tolerance levels of sensitive parameters. Design of experiment and regression analysis are applied in this method. The optimal tolerance levels are selected in accord with a quality-cost model to improve consistency of output response and reduce failure rates of critical components synchronously. The application in light-emitting diode (LED) drivers indicates details and potential. It shows that the proposed method provides a more effective way to improve performance and reliability of electronic circuits. 展开更多
关键词 design of experiments multi-objective Quality-cost model Reliability design Sensitivity analysis Tolerance design
原文传递
Multidisciplinary Design Optimization of Vehicle Instrument Panel Based on Multi-objective Genetic Algorithm 被引量:15
16
作者 WANG Ping WU Guangqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期304-312,共9页
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut... Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO. 展开更多
关键词 instrument panel(IP) NVH SAFETY multidisciplinary design optimization multi-objective optimization
在线阅读 下载PDF
LEO navigation augmentation constellation design with the multi-objective optimization approaches 被引量:16
17
作者 Yi HAN Lei WANG +4 位作者 Wenju FU Haitao ZHOU Tao LI Beizhen XU Ruizhi CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期265-278,共14页
Low Earth Orbit(LEO)satellite for navigation augmentation applications can significantly reduce the precise positioning convergence time and attract increasing attention recently.A few LEO Navigation Augmentation(LEO-... Low Earth Orbit(LEO)satellite for navigation augmentation applications can significantly reduce the precise positioning convergence time and attract increasing attention recently.A few LEO Navigation Augmentation(LEO-NA)constellations have been proposed,while corresponding constellation design methodologies have not been systematically studied.The LEO-NA constellation generally consists of a huge number of LEO satellites and it strives for multiple optimization purposes.It is essentially different from the communication constellation or earth observing constellation design problem.In this study,we modeled the LEO-NA constellation design problem as a multi-objective optimization problem and solve this problem with the MultiObjective Particle Swarm Optimization(MOPSO)algorithm.Three objectives are used to strive for the best tradeoff between the augmentation performance and deployment efficiency,namely the Position Dilution of Precision(PDOP),visible LEO satellites and the orbit altitude.A fuzzy set approach is used to select the final constellation from a set of Pareto optimal solutions given by the MOPSO algorithm.To evaluate the performance of the optimized constellation,we tested two constellations with 144 and 288 satellites and each constellation has three optimization schemes:the polar constellation,the single-layer constellation and the two-layer constellation.The results indicate that the optimized two-layer constellation achieves the best global coverage and is followed by the single-layer constellation.The MOPSO algorithm can help to improve the constellation design and is suitable for solving the LEO-NA constellation design problem. 展开更多
关键词 LEO-augmented multi-GNSS LEO constellation design MOPSO multi-objective optimization Orbit optimization
原文传递
Multi-objective Optimization Conceptual Design of Product Structure Based on Variable Length Gene Expression 被引量:6
18
作者 WEI Xiaopeng ZHAO Tingting +2 位作者 JU Zhenhe ZHANG Shi LI Xiaoxiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期42-49,共8页
It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure acc... It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively. 展开更多
关键词 gene expression multi-object optimization conceptual design genetic algorithm
在线阅读 下载PDF
Satellite Constellation Design with Multi-Objective Genetic Algorithm for Regional Terrestrial Satellite Network 被引量:12
19
作者 Cuiqin Dai Guimin Zheng Qianbin Chen 《China Communications》 SCIE CSCD 2018年第8期1-10,共10页
Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple f... Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas. 展开更多
关键词 regional terrestrial-satellite net-work constellation design multi-objective optimization genetic algorithm coverage performance
在线阅读 下载PDF
Time-Variant Reliability-Based Multi-Objective Fuzzy Design Optimization for Anti-Roll Torsion Bar of EMU 被引量:7
20
作者 Pengpeng Zhi Zhonglai Wang +1 位作者 Bingzhi Chen Ziqiang Sheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1001-1022,共22页
Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the ... Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric multiple unit(EMU)car body,it is critical to ensure the reliability of structural design due to the complexity of the problems involving time and uncertainties.To address this issue,amulti-objective fuzzy design optimization model is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar.A hybrid optimization strategy combining the design of experiment(DoE)sampling and non-linear programming by quadratic lagrangian(NLPQL)is presented to deal with the design optimization model.To characterize the effect of time on the structural performance of the torsion bar,the continuous-time model combined with Ito lemma is proposed to establish the time-variant stiffness and strength reliability constraints.Fuzzy mathematics is employed to conduct uncertainty quantification for the design parameters of the torsion bar.A physical programming approach is used to improve the designer’s preference and to make the optimization results more consistent with engineering practices.Moreover,the effectiveness of the proposed method has been validated by comparing with current methods in a practical engineering case. 展开更多
关键词 Anti-roll torsion bar time-variant reliability fuzzy design optimization multi-objective
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部