期刊文献+
共找到72,083篇文章
< 1 2 250 >
每页显示 20 50 100
A vague-set-based fuzzy multi-objective decision making model for bidding purchase 被引量:4
1
作者 WANG Zhou-jing QIAN Edward Y. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期644-650,共7页
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord... A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined. 展开更多
关键词 Fuzzy multi-objective decision making model Vague set Score function Lower bound of satisfaction Upper bound of dissatisfaction
在线阅读 下载PDF
Improved Fuzzification Method for Multi-Objective Decision-Making and Its Application in Evaluation of Highway Planning
2
作者 雷秀娟 史忠科 《Journal of Southwest Jiaotong University(English Edition)》 2003年第2期198-202,共5页
A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva... A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable. 展开更多
关键词 multi-objective decision-making fuzzy consistent matrix LOWA operator EVALUATION highway planning
在线阅读 下载PDF
Fuzzy Multi-Objective Decision Model of Supplier Selection with Preference Information 被引量:1
3
作者 Chen Zhixiang School of Management, Zhongshan University, Guangzhou 510275, P. R. China Ma Shihua & Chen Rongqiu School of Management, Huazhong University of Science & Technology, Wuhan 430074, R R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第1期34-41,共8页
Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different su... Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper. 展开更多
关键词 multi-objective Supplier selection FuzZy membership degree.
在线阅读 下载PDF
A multi-objective decision-making method for the treatment scheme of landslide hazard 被引量:8
4
作者 QuanminXie YuanyouXia 《Journal of University of Science and Technology Beijing》 CSCD 2004年第2期101-105,共5页
The treatment engineering of landslide hazard is a complicated systemengineering. The selecting treatment scheme is influenced by many factors such as technology,economics, environment, and risk. The decision-making o... The treatment engineering of landslide hazard is a complicated systemengineering. The selecting treatment scheme is influenced by many factors such as technology,economics, environment, and risk. The decision-making of treatment schemes of landslide hazard is aproblem of comprehensive judgment with multi-hierarchy and multi-objective. The traditional analysishierarchy process needs identity test. The traditional analysis hierarchy process is improved bymeans of optimal transfer matrix here. An improved hierarchy decision-making model for the treatmentof landslide hazard is set up. The judgment matrix obtained by the method can naturally meet therequirement of identity, so the identity test is not necessary. At last, the method is applied tothe treatment decision-making of the dangerous rock mass at the Slate Mountain, and its applicationis discussed in detail. 展开更多
关键词 landslide hazard treatment scheme improved hierarchy decision-making model optimal transfer matrix
在线阅读 下载PDF
Control Method of Effect of Robust Optimization in Multi-Player Multi-Objective Decision-Making
5
作者 Tomoaki Yatsuka Aya Ishigaki +2 位作者 Yuki Kinoshita Tetsuo Yamada Masato Inoue 《American Journal of Operations Research》 2019年第4期175-191,共17页
In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on ... In the real situations of supply chain, there are different parts such as facilities, logistics warehouses and retail stores and they handle common kinds of products. In this research, these situations are focused on as the background of this research. They deal with the common quantities of their products, but due to their different environments, the optimal production quantity of one part can be unacceptable to another part and it may suffer a heavy loss. To avoid that kind of unacceptable situations, the common production quantities should be acceptable to all parts in one supply chain. Therefore, the motivation of this research is the necessity of the method to find the production quantities that make all decision makers acceptable is needed. However, it is difficult to find the production quantities that make all decision makers acceptable. Moreover, their acceptable ranges do not always have common ranges. In the decision making of car design, there are similar situations to this type of decision making. The performance of a car consists of purposes such as fuel efficiency, size and so on. Improving one purpose makes another worse and the relationship between these purposes is tradeoff. In these cases, Suriawase process is applied. This process consists of negotiations and reviews of the requirements of the purposes. In the step of negotiations, the requirements of the purposes are share among all decision makers and the solution that makes them as satisfied as possible. In the step of reviews of the requirements, they are reviewed based on the result of the negotiation if the result is unacceptable to some of decision makers. Therefore, through the iterations of the two steps, the solution that makes all decision makers satisfied is obtained. However, in the previous research, the effects that one decision maker reviews requirements in Suriawase process are quantified, but the mathematical model to modify the ranges of production quantities of all decision makers simultaneously is not shown. Therefore, in this research, based on Suriawase process, the mathematical model of multi-player multi-objective decision making is proposed. The mathematical model of multi-player multi-objective decision making by using linear physical programming (LPP) and robust optimization (RO) in the previous research is the basis of the methods of this research. LPP is one of the multi-objective optimization methods and RO is used to make the balance of the preference levels among decision makers. In LPP, the preference ranges of all objective functions are needed, so as the hypothesis of this research. In the research referred in this research, the method to control the effect of RO is not shown. If the effect of RO is too big, the average of the preference level becomes worse. The purpose of this research is to reproduce the mathematical model of multi-player multi-objective decision making based on Suriawase process and propose the method to control the effect of RO. In the proposed model, a set of the solutions of the negotiation problem is obtained and it is proved by the result of the numerical experiment. Therefore, the conclusion that the proposed model is available to obtain a set of the solutions of the negotiation problems in supply chain. 展开更多
关键词 Linear PHYSICAL PROGRAMMING Suriawase Process Multi-Player decision-MAKING Supply CHAIN COORDINATION Robust Optimization
暂未订购
Intelligent decision-making for TBM tunnelling control parameters using multi-objective optimization
6
作者 Shaokang Hou Yaoru Liu +3 位作者 Jialin Yu Rujiu Zhang Li Cheng Chenfeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2943-2963,共21页
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli... In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application. 展开更多
关键词 Tunnel boring machine(TBM) Intelligent decision-making multi-objective optimization(MOO) Control parameters
在线阅读 下载PDF
A Decision Variables Classification-Based Evolutionary Algorithm for Constrained Multi-Objective Optimization Problems
7
作者 Xuanxuan Ban Jing Liang +4 位作者 Kangjia Qiao Kunjie Yu Yaonan Wang Jinzhu Peng Boyang Qu 《IEEE/CAA Journal of Automatica Sinica》 2025年第9期1830-1849,共20页
Solving constrained multi-objective optimization problems(CMOPs)is a challenging task due to the presence of multiple conflicting objectives and intricate constraints.In order to better address CMOPs and achieve a bal... Solving constrained multi-objective optimization problems(CMOPs)is a challenging task due to the presence of multiple conflicting objectives and intricate constraints.In order to better address CMOPs and achieve a balance between objectives and constraints,existing constrained multi-objective evolutionary algorithms(CMOEAs)predominantly focus on devising various strategies by leveraging the relationships between objectives and constraints,and the designed strategies usually are effective for the problems with simple constraints.However,these methods most ignore the relationship between decision variables and constraints.In fact,the essence of optimization is to find appropriate decision variables to meet various complex constraints.Therefore,it is hoped that the problem can be analyzed from the perspective of decision variables,so as to obtain more excellent results.Based on the above motivation,this paper proposes a decision variables classification approach,according to the relationship between decision variables and constraints,variables are divided into constraint-related(CR)variables and constraintindependent(CI)variables.Consequently,by optimizing these two types of variables independently,the population can sustain a favorable balance between feasibility and diversity.Furthermore,specific offspring generation strategies are proposed for the two categories of decision variables in order to achieve rapid convergence while maintaining population diversity.Experimental results on 31 test problems as well as 20 real-world problems demonstrate that the proposed algorithm is competitive compared to some state-of-the-art constrained multi-objective optimization algorithms. 展开更多
关键词 Constraint-independent(CI) constrained multiobjective optimization constraint-related(CR) decision variables
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
8
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris Hawks optimization multi-objective optimization
在线阅读 下载PDF
Build orientation determination of multi-feature mechanical parts in selective laser melting via multi-objective decision making 被引量:1
9
作者 Hongsheng SHENG Jinghua XU +2 位作者 Shuyou ZHANG Jianrong TAN Kang WANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期227-251,共25页
Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build ori... Selective laser melting(SLM)is a unique additive manufacturing(AM)category that can be used to manufacture mechanical parts.It has been widely used in aerospace and automotive using metal or alloy powder.The build orientation is crucial in AM because it affects the as-built part,including its part accuracy,surface roughness,support structure,and build time and cost.A mechanical part is usually composed of multiple surface features.The surface features carry the production and design knowledge,which can be utilized in SLM fabrication.This study proposes a method to determine the build orientation of multi-feature mechanical parts(MFMPs)in SLM.First,the surface features of an MFMP are recognized and grouped for formulating the particular optimization objectives.Second,the estimation models of involved optimization objectives are established,and a set of alternative build orientations(ABOs)is further obtained by many-objective optimization.Lastly,a multi-objective decision making method integrated by the technique for order of preference by similarity to the ideal solution and cosine similarity measure is presented to select an optimal build orientation from those ABOs.The weights of the feature groups and considered objectives are achieved by a fuzzy analytical hierarchy process.Two case studies are reported to validate the proposed method with numerical results,and the effectiveness comparison is presented.Physical manufacturing is conducted to prove the performance of the proposed method.The measured average sampling surface roughness of the most crucial feature of the bracket in the original orientation and the orientations obtained by the weighted sum model and the proposed method are 15.82,10.84,and 10.62μm,respectively.The numerical and physical validation results demonstrate that the proposed method is desirable to determine the build orientations of MFMPs with competitive results in SLM. 展开更多
关键词 selective laser melting(SLM) build orientation determination multi-feature mechanical part(MFMP) fuzzy analytical hierarchy process multi-objective decision making(MODM)
原文传递
Stability Analysis and Efficiency Improvement of a Multi-converter System Using Multi-objective Decision Making 被引量:1
10
作者 Rashmi Patel R.Chudamani 《Chinese Journal of Electrical Engineering》 CSCD 2023年第2期71-83,共13页
Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves... Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves constant voltage load(CVL),constant power load(CPL)and other loads.The CPL in such systems offers negative impedance characteristic and it creates a destabilizing effect on the main converter.The effect of destabilization can be reduced by increasing the CVL or inserting parasitic components.Attempts have been made by authors to improve the stability by using parasitics of different components such as switch,diode and inductor.Influence of insertion of parasitics including the series equivalent resistance of the filter capacitor and variation in CVL on the performance of main converter is mathematically analyzed and conflicting behavior between system stability and efficiency is observed.The optimum solution between these two functions is obtained by using multi-objective decision making(MODM)by varying parasitics of different components and CVL.An attempt has been made to demonstrate the effect of CVL load and the parasitics on the stability and efficiency of the main converter,experimentally. 展开更多
关键词 Multi-converter system constant power load(CPL) STABILITY parasitic elements efficiency and multi-objective decision making(MODM)
原文传递
A Class of Optimization Method for Bilevel Multi-objective Decision Making Problem with the Help of Satisfactoriness
11
作者 LITong TENGChun-xian 《Systems Science and Systems Engineering》 CSCD 2002年第1期6-12,共7页
In the paper, it is discussed that the method on how to transform the multi-person bilevel multi-objective decision making problem into the equivalent generalized multi-objective decision making problem by using Kuhn-... In the paper, it is discussed that the method on how to transform the multi-person bilevel multi-objective decision making problem into the equivalent generalized multi-objective decision making problem by using Kuhn-Tucker sufficient and necessary condition. In order to embody the decision maker′s hope and transform it into single-objective decision making problem with the help of ε-constraint method. Then we can obtain the global optimal solution by means of simulated annealing algorithm. 展开更多
关键词 bilevel multi-objective decision making satisfactoriness non-inferior solution simulated annealing algorithm
原文传递
Two-Stage Interactive Multi-Objective Decision-Making Method Based on the Satisfactoriness Criterion
12
作者 蒋尚华 江孝感 徐南荣 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期93-100,共8页
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the... In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method. 展开更多
关键词 multi objective decision making satisfactoriness criterion collection of preference information
在线阅读 下载PDF
Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks
13
作者 Asal Jameel Khudhair Amenah Dahim Abbood 《Computers, Materials & Continua》 2026年第1期1453-1483,共31页
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r... Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification. 展开更多
关键词 multi-objective optimization evolutionary algorithms community detection HEURISTIC METAHEURISTIC hybrid social network MODELS
在线阅读 下载PDF
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
14
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
15
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making 被引量:3
16
作者 LIANG Yan’gang QIN Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期535-544,共10页
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the... A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform. 展开更多
关键词 layout OPTIMIZATION SATELLITE multi-objective OPTIMIZATION PARETO FRONT MULTI-ATTRIBUTE decision making
在线阅读 下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier 被引量:1
17
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
在线阅读 下载PDF
A Class of Genetic Algorithms on Bilevel Multi-objective Decision Making Problem 被引量:1
18
作者 TENG Chun\|xian,\ LI Lei,\ LI Hao\|bai Harbin University of Science and Technology, Harbin 150080, China 《Systems Science and Systems Engineering》 CSCD 2000年第3期290-296,共7页
In this paper, it is discussed that the method on how to transform the bilevel multi objective decision making problem (BMDMP) into the equivalent generalized multi objective decision making problem. In order to bet... In this paper, it is discussed that the method on how to transform the bilevel multi objective decision making problem (BMDMP) into the equivalent generalized multi objective decision making problem. In order to better embody the decision maker′s hope and desire, we can transform it into the goal programming problem by means of genetic algorithms and obtain the goal optimization solution. The method which is satisfactory is elaborated in the following example. 展开更多
关键词 multi objective decision making goal programming genetic algorithms
原文传递
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
19
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
在线阅读 下载PDF
An Improved Interactively Method Based on Fuzzy Satisfying Degree for Multi-objective Decision Making
20
作者 Shuhua Mao Xinping Xiao 《Journal of Systems Science and Information》 2007年第4期399-404,共6页
In order to make a decision in the face of multiple objectives, it is necessary to know the relative importance of the different objectives. Yet, it is often very difficult to specify a set of precise weights before p... In order to make a decision in the face of multiple objectives, it is necessary to know the relative importance of the different objectives. Yet, it is often very difficult to specify a set of precise weights before possible alternatives solutions are known. In this paper, we present an improved weighted method, which is based on a modified definition by the membership function of fuzzy theory; an interactive, iterative method for arriving at an acceptable solution. The decision maker gradually discerns what is achievable and adjusts his aspirations and implicitly the specification of weights and trade-offs between his objectives, in the light of what he learns. To aid the decision maker's cognition and to allow him to express his wishes in a natural way, we present decision maker with grey relational degree to select the best solution from the finite solutions. 展开更多
关键词 multi-objective decision making interactively method fuzzy satisfying degree ENTROPY
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部