期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:14
1
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
在线阅读 下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:2
2
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
3
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Multi-objective optimization design of anti-roll torsion bar using improved beluga whale optimization algorithm
4
作者 Yonghua Li Zhe Chen +1 位作者 Maorui Hou Tao Guo 《Railway Sciences》 2024年第1期32-46,共15页
Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the fi... Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the finite element approach coupled with the improved belugawhale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the designof the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar weredefined as random variables, and the torsion bar’s mass and strength were investigated using finite elements.Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whaleoptimization (BWO) algorithm and run case studies.Findings – The findings demonstrate that the IBWO has superior solution set distribution uniformity,convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimizethe anti-roll torsion bar design. The error between the optimization and finite element simulation results wasless than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress wasreduced by 35% and the stiffness was increased by 1.9%.Originality/value – The study provides a methodological reference for the simulation optimization process ofthe lateral anti-roll torsion bar. 展开更多
关键词 Anti-roll torsion bar multi-objective optimization IBWO chaotic mapping differential evolution
在线阅读 下载PDF
Dynamic multi-objective differential evolution algorithm based on the information of evolution progress 被引量:4
5
作者 HOU Ying WU YiLin +2 位作者 LIU Zheng HAN HongGui WANG Pu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第8期1676-1689,共14页
The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy... The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy of the MODE algorithm still appears as an open problem.In this paper,a dynamic multi-objective differential evolution algorithm,based on the information of evolution progress(DMODE-IEP),is developed to improve the optimization performance.The main contributions of DMODE-IEP are as follows.First,the information of evolution progress,using the fitness values,is proposed to describe the evolution progress of MODE.Second,the dynamic adjustment mechanisms of evolution parameter values,mutation strategies and selection parameter value based on the information of evolution progress,are designed to balance the global exploration ability and the local exploitation ability.Third,the convergence of DMODE-IEP is proved using the probability theory.Finally,the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms,including the quality of the solutions,and the optimization speed of the algorithm. 展开更多
关键词 information of evolution progress multi-objective differential evolution algorithm optimization effect optimization speed CONVERGENCE
原文传递
Evolutionary Trajectory Planning for an Industrial Robot 被引量:6
6
作者 R.Saravanan S.Ramabalan +1 位作者 C.Balamurugan A.Subash 《International Journal of Automation and computing》 EI 2010年第2期190-198,共9页
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th... This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed. 展开更多
关键词 multi-objective optimal trajectory planning oscillating obstacles elitist non-dominated sorting genetic algorithm (NSGA-II) multi-objective differential evolution (MODE) multi-objective performance metrics.
在线阅读 下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
7
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
在线阅读 下载PDF
Multi-objective differential evolution with diversity enhancement 被引量:2
8
作者 Ponnuthurai-Nagaratnam SUGANTHAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第7期538-543,共6页
Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. Howev... Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement. 展开更多
关键词 multi-objective evolutionary algorithm (MOEA) multi-objective differential evolution (MODE) Diversity enhancement
原文传递
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
9
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
在线阅读 下载PDF
基于改进DE-SQP算法的运载火箭轨迹优化方法研究 被引量:3
10
作者 郭晶晶 王建华 +1 位作者 于沫尧 项月 《战术导弹技术》 北大核心 2025年第1期94-103,共10页
针对多约束条件下运载火箭轨迹优化问题,提出一种融合改进差分进化算法和序列二次规划算法的轨迹DE-SQP优化方法。建立运载火箭质心运动模型和各项约束条件的数学表征模型;该创新设计改进差分进化算法生成初值,并利用序列二次规划方法... 针对多约束条件下运载火箭轨迹优化问题,提出一种融合改进差分进化算法和序列二次规划算法的轨迹DE-SQP优化方法。建立运载火箭质心运动模型和各项约束条件的数学表征模型;该创新设计改进差分进化算法生成初值,并利用序列二次规划方法快速局部寻优的组合优化策略。引入Chebyshev混沌映射,生成分布更为均匀且探索性更强的初始种群,同时融合反向学习策略,有效增加种群的多样性并加速收敛过程,利用改进差分进化算法生成优化轨迹的初值。基于序列二次规划方法显著的局部搜索能力,进一步在轨迹初值的基础上精准寻优,完成运载火箭轨迹的优化求解。数值仿真表明,改进的DE-SQP算法具有较强的全局优化和局部精确搜索能力,可以有效解决运载火箭轨迹优化问题,为相关理论研究和工程应用提供参考和技术支持。 展开更多
关键词 差分进化算法 Chebyshev混沌映射 反向学习 DE-SQP组合优化 伪谱法 轨迹优化
原文传递
基于改进差分松鼠搜索算法MPPT控制策略
11
作者 崔敏 张云锐 +2 位作者 武奇生 李林宜 李艳波 《智能建筑电气技术》 2025年第3期17-24,47,共9页
为了解决传统最大功率点跟踪(MPPT)控制方法易陷入局部功率最优值,收敛速度慢,精度较低的问题,在松鼠搜索算法(SSA)的基础上提出了一种基于差分改进松鼠搜素算法(IDSSA)的MPPT控制策略。首先使用改进Tent混沌映射代替标准SSA算法中的随... 为了解决传统最大功率点跟踪(MPPT)控制方法易陷入局部功率最优值,收敛速度慢,精度较低的问题,在松鼠搜索算法(SSA)的基础上提出了一种基于差分改进松鼠搜素算法(IDSSA)的MPPT控制策略。首先使用改进Tent混沌映射代替标准SSA算法中的随机数分布对算法进行初始化,使算法初始化种群具有良好的多样性且分布均匀;其次采用差分进化算法中经过优化的差分变异机制,通过对初始种群的变异和交叉操作,进一步提升算法全局搜索与局部收敛能力;为了兼顾算法的全局搜索与局部开发性能,通过对SSA算法中捕食者概率与莱维飞行因子进行非线性递减优化,使算法具有更好的寻优精度。仿真结果表明,在均匀光照,静态阴影和瞬时变化阴影条件下,IDSSA算法较基础SSA算法以及其他几种改进启发式算法拥有更好的跟踪精度和收敛速度,有效解决光伏系统在复杂环境下的功率跟踪难题。 展开更多
关键词 光伏系统 局部遮荫 最大功率点追踪 松鼠搜索算法 Tent混沌映射 差分进化算法 莱维飞行因子
原文传递
融入差分进化与透镜成像的黑翅鸢优化算法
12
作者 沈越 陈丽敏 王一荻 《牡丹江师范学院学报(自然科学版)》 2025年第4期9-13,共5页
提出一种改进的黑翅鸢优化算法(DBKA).用sine混沌映射初始化种群,增加种群多样性;引入差分进化机制增强算法的全局搜索能力,并通过动态调整缩放因子和交叉概率因子提高全局搜索能力;采用透镜成像反向学习与高斯扰动相结合,增强算法的全... 提出一种改进的黑翅鸢优化算法(DBKA).用sine混沌映射初始化种群,增加种群多样性;引入差分进化机制增强算法的全局搜索能力,并通过动态调整缩放因子和交叉概率因子提高全局搜索能力;采用透镜成像反向学习与高斯扰动相结合,增强算法的全局探索能力和收敛性.改进的黑翅鸢算法具有更好的鲁棒性、适应性,可加快算法收敛速度,有效避免早熟收敛的情况. 展开更多
关键词 黑翅鸢算法 sine混沌映射 差分进化
在线阅读 下载PDF
基于多策略差分进化算法的WSN覆盖优化
13
作者 许哲铭 谭飞 +1 位作者 李汶娜 汪奇 《四川轻化工大学学报(自然科学版)》 2025年第6期60-68,共9页
针对传统无线传感器网络中随机部署的节点容易分布不均从而导致网络质量较低的问题,提出一种基于改进差分进化算法(MSDE)的无线传感器网络覆盖优化方案。首先,在算法初始化阶段采用精英个体初始化以提升初始种群质量;其次,根据算法迭代... 针对传统无线传感器网络中随机部署的节点容易分布不均从而导致网络质量较低的问题,提出一种基于改进差分进化算法(MSDE)的无线传感器网络覆盖优化方案。首先,在算法初始化阶段采用精英个体初始化以提升初始种群质量;其次,根据算法迭代阶段的特点设计了不同的变异策略,增强算法全局搜索能力;此外,为防止算法陷入局部最优,引入周期波动策略;最后,通过基准测试函数,验证了改进算法的寻优能力。MSDE相对于对比算法优化效果更好,其优化后的WSN覆盖率对比标准差分进化算法在3种不同场景下分别提升了12.63、17.48、21.16个百分点。结果表明,MSDE在WSN覆盖优化问题中具有较好的适用性与优越性。 展开更多
关键词 无线传感器网络 差分进化算法 节点部署 混沌映射
在线阅读 下载PDF
基于混沌差分进化算法的通信网络流量调度优化
14
作者 贺易 叶露 汤弋 《微型电脑应用》 2025年第8期164-168,共5页
通信网络的流量调度优化常采用差分进化算法进行求解,容易陷入局部最优解,因此,提出基于混沌差分进化算法的通信网络流量调度优化方法。将通信网络拓扑结构描述为有向图形式,建立门控调度机制。利用多元回归分析方法设置通信网络流量队... 通信网络的流量调度优化常采用差分进化算法进行求解,容易陷入局部最优解,因此,提出基于混沌差分进化算法的通信网络流量调度优化方法。将通信网络拓扑结构描述为有向图形式,建立门控调度机制。利用多元回归分析方法设置通信网络流量队列均衡配置条件。以端到端时延最小化、带宽占用量最小化为目标,构造通信网络流量调度优化目标函数。应用混沌差分进化算法对目标函数进行迭代求解,获取最佳流量调度优化方案。实验结果表明,混沌差分进化算法迭代15次就得到了最小目标函数取值,通信网络平均端到端时延低于40 ms,更好地满足了通信网络流量调度需求。 展开更多
关键词 混沌差分进化算法 通信网络 流量调度 均衡控制
在线阅读 下载PDF
基于混沌搜索的自适应差分进化算法 被引量:23
15
作者 卢有麟 周建中 +1 位作者 李英海 覃晖 《计算机工程与应用》 CSCD 北大核心 2008年第10期31-33,39,共4页
提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全... 提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全局最优解的概率。对几种典型的测试函数对CADE进行了测试,实验结果表明,该算法能有效地避免早熟收敛,具有良好的全局收敛性。 展开更多
关键词 差分进化算法 自适应 混沌搜索 全局优化
在线阅读 下载PDF
混沌差分文化算法及其仿真应用研究 被引量:12
16
作者 卢有麟 周建中 +2 位作者 李英海 覃晖 张勇传 《系统仿真学报》 CAS CSCD 北大核心 2009年第16期5107-5111,共5页
针对差分进化算法(DE)全局寻优能力差,无法有效的求解工程中复杂的高维非线性优化问题等缺点,提出一种混沌差分文化算法(CDECA)。该算法模型将DE嵌入文化算法的框架作为主群体空间的进化过程,同时,引入具有较强局部搜索性能的混沌搜索... 针对差分进化算法(DE)全局寻优能力差,无法有效的求解工程中复杂的高维非线性优化问题等缺点,提出一种混沌差分文化算法(CDECA)。该算法模型将DE嵌入文化算法的框架作为主群体空间的进化过程,同时,引入具有较强局部搜索性能的混沌搜索来进行信念空间的进化,并通过设计一组联系操作实现文化算法模型中两个空间的互相影响互相促进,提高算法的寻优效率。几个典型测试函数的测试结果表明CDECA的搜索能力优于DE,将其应用于某大型水库的优化调度,也取得满意的效果。 展开更多
关键词 差分进化算法 文化算法 混沌搜索 水库优化调度
原文传递
多目标混沌差分进化算法 被引量:28
17
作者 牛大鹏 王福利 +1 位作者 何大阔 贾明兴 《控制与决策》 EI CSCD 北大核心 2009年第3期361-364,370,共5页
将差分进化算法用于多目标优化问题,提出了多目标混沌差分进化算法(CDEMO).该算法利用混沌序列初始化种群,并用混沌备用种群进行替换操作.该操作不仅起到了维持非劣最优解集均匀性的作用,而且增强了算法的搜索功能.对CDEMO的性能进行研... 将差分进化算法用于多目标优化问题,提出了多目标混沌差分进化算法(CDEMO).该算法利用混沌序列初始化种群,并用混沌备用种群进行替换操作.该操作不仅起到了维持非劣最优解集均匀性的作用,而且增强了算法的搜索功能.对CDEMO的性能进行研究,数值实验结果表明了CDEMO的有效性. 展开更多
关键词 差分进化算法 多目标优化 混沌备用种群 非劣最优解集
原文传递
一种改进的灰狼优化算法 被引量:71
18
作者 龙文 蔡绍洪 +1 位作者 焦建军 伍铁斌 《电子学报》 EI CAS CSCD 北大核心 2019年第1期169-175,共7页
灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一... 灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一种控制参数a随机动态调整策略.此外,为了提高算法的全局收敛速度,用混沌初始化方法产生初始种群.采用18个高维测试函数进行仿真实验,结果表明:对于绝大多数情形,在相同最大适应度函数评价次数下,本文算法的性能明显优于标准灰狼优化算法. 展开更多
关键词 灰狼优化算法 差分进化 粒子群优化 控制参数 混沌初始化
在线阅读 下载PDF
三峡梯级枢纽多目标生态优化调度模型及其求解方法 被引量:38
19
作者 卢有麟 周建中 +1 位作者 王浩 张勇传 《水科学进展》 EI CAS CSCD 北大核心 2011年第6期780-788,共9页
针对三峡梯级枢纽综合效益的充分发挥及其对长江流域典型生态系统修复及持续改善的科学需求,通过分析发电效益与生态效益之间的制约竞争关系,以发电量最大和生态缺水量最小为目标建立了梯级电站多目标生态优化调度模型,对三峡梯级枢纽... 针对三峡梯级枢纽综合效益的充分发挥及其对长江流域典型生态系统修复及持续改善的科学需求,通过分析发电效益与生态效益之间的制约竞争关系,以发电量最大和生态缺水量最小为目标建立了梯级电站多目标生态优化调度模型,对三峡梯级枢纽多目标生态优化调度进行了研究。同时,针对传统优化方法难以同时处理多个调度目标的固有缺陷,提出一种改进多目标差分进化算法对所构建模型进行高效求解。该方法针对差分进化算法在多目标协同优化和全局寻优能力等方面的不足,依据问题的特点重新设计了差分进化算法的进化算子,同时设计了一种多目标混沌搜索策略以加强算法的局部搜索能力。最后,依据多目标生态优化调度问题的特点设计了一种不需要设置惩罚因子的约束处理方法。通过三峡梯级枢纽多目标生态优化调度的实例应用,验证了本文所构建模型的合理性以及所提出算法的有效性和工程实用性。 展开更多
关键词 生态调度 多目标 差分进化算法 混沌序列 约束处理 三峡梯级
在线阅读 下载PDF
基于粗糙集理论与CLSDE算法的环境经济调度优化模型 被引量:13
20
作者 谭忠富 鞠立伟 +3 位作者 陈致宏 李欢欢 许长青 赵宝柱 《电网技术》 EI CSCD 北大核心 2014年第5期1339-1345,共7页
针对环境经济发电调度优化问题,提出了一种应用粗糙集理论构建评价函数的多目标优化方法,并提出了基于混沌局部搜索策略的差分进化算法(chaotic local search strategy differential evolution algorithm,CLSDE)的求解算法。应用粗糙集... 针对环境经济发电调度优化问题,提出了一种应用粗糙集理论构建评价函数的多目标优化方法,并提出了基于混沌局部搜索策略的差分进化算法(chaotic local search strategy differential evolution algorithm,CLSDE)的求解算法。应用粗糙集理论确定经济调度和环境调度函数的约束度,以确定各目标函数在优化模型中的权值。采用CLSDE算法求解环境经济调度(environmental economic dispatch,EED)多目标优化模型,该算法只对目标函数中的变量进行编码,约束条件函数中的变量随机产生,每代进化完毕后,对最优个体进行混沌局部搜索,克服了差分进化算法局部搜索能力较弱和惩罚函数方法中惩罚参数选择较难的问题。对IEEE30节点的标准测试系统进行了仿真计算,结果表明CLSDE算法在解决环境经济调度问题时具有可行性和有效性,在不增加污染气体排放量的同时降低燃料费用,使环境经济调度更能兼顾发电调度的经济利益与环境利益。 展开更多
关键词 环境经济调度 评价函数 粗糙集理论 基于混沌局部搜索策略的差分进化算法 优化 多目标
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部