期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:14
1
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
在线阅读 下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:1
2
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
3
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Multi-objective optimization design of anti-roll torsion bar using improved beluga whale optimization algorithm
4
作者 Yonghua Li Zhe Chen +1 位作者 Maorui Hou Tao Guo 《Railway Sciences》 2024年第1期32-46,共15页
Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the fi... Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by thetraditional empirical design and improving its strength and stiffness.Design/methodology/approach – Based on the finite element approach coupled with the improved belugawhale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the designof the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar weredefined as random variables, and the torsion bar’s mass and strength were investigated using finite elements.Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whaleoptimization (BWO) algorithm and run case studies.Findings – The findings demonstrate that the IBWO has superior solution set distribution uniformity,convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimizethe anti-roll torsion bar design. The error between the optimization and finite element simulation results wasless than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress wasreduced by 35% and the stiffness was increased by 1.9%.Originality/value – The study provides a methodological reference for the simulation optimization process ofthe lateral anti-roll torsion bar. 展开更多
关键词 Anti-roll torsion bar multi-objective optimization IBWO chaotic mapping differential evolution
在线阅读 下载PDF
Dynamic multi-objective differential evolution algorithm based on the information of evolution progress 被引量:4
5
作者 HOU Ying WU YiLin +2 位作者 LIU Zheng HAN HongGui WANG Pu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第8期1676-1689,共14页
The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy... The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy of the MODE algorithm still appears as an open problem.In this paper,a dynamic multi-objective differential evolution algorithm,based on the information of evolution progress(DMODE-IEP),is developed to improve the optimization performance.The main contributions of DMODE-IEP are as follows.First,the information of evolution progress,using the fitness values,is proposed to describe the evolution progress of MODE.Second,the dynamic adjustment mechanisms of evolution parameter values,mutation strategies and selection parameter value based on the information of evolution progress,are designed to balance the global exploration ability and the local exploitation ability.Third,the convergence of DMODE-IEP is proved using the probability theory.Finally,the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms,including the quality of the solutions,and the optimization speed of the algorithm. 展开更多
关键词 information of evolution progress multi-objective differential evolution algorithm optimization effect optimization speed CONVERGENCE
原文传递
Evolutionary Trajectory Planning for an Industrial Robot 被引量:6
6
作者 R.Saravanan S.Ramabalan +1 位作者 C.Balamurugan A.Subash 《International Journal of Automation and computing》 EI 2010年第2期190-198,共9页
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th... This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed. 展开更多
关键词 multi-objective optimal trajectory planning oscillating obstacles elitist non-dominated sorting genetic algorithm (NSGA-II) multi-objective differential evolution (MODE) multi-objective performance metrics.
在线阅读 下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
7
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
在线阅读 下载PDF
Multi-objective differential evolution with diversity enhancement 被引量:2
8
作者 Ponnuthurai-Nagaratnam SUGANTHAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第7期538-543,共6页
Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. Howev... Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement. 展开更多
关键词 multi-objective evolutionary algorithm (MOEA) multi-objective differential evolution (MODE) Diversity enhancement
原文传递
基于改进DE-SQP算法的运载火箭轨迹优化方法研究 被引量:1
9
作者 郭晶晶 王建华 +1 位作者 于沫尧 项月 《战术导弹技术》 北大核心 2025年第1期94-103,共10页
针对多约束条件下运载火箭轨迹优化问题,提出一种融合改进差分进化算法和序列二次规划算法的轨迹DE-SQP优化方法。建立运载火箭质心运动模型和各项约束条件的数学表征模型;该创新设计改进差分进化算法生成初值,并利用序列二次规划方法... 针对多约束条件下运载火箭轨迹优化问题,提出一种融合改进差分进化算法和序列二次规划算法的轨迹DE-SQP优化方法。建立运载火箭质心运动模型和各项约束条件的数学表征模型;该创新设计改进差分进化算法生成初值,并利用序列二次规划方法快速局部寻优的组合优化策略。引入Chebyshev混沌映射,生成分布更为均匀且探索性更强的初始种群,同时融合反向学习策略,有效增加种群的多样性并加速收敛过程,利用改进差分进化算法生成优化轨迹的初值。基于序列二次规划方法显著的局部搜索能力,进一步在轨迹初值的基础上精准寻优,完成运载火箭轨迹的优化求解。数值仿真表明,改进的DE-SQP算法具有较强的全局优化和局部精确搜索能力,可以有效解决运载火箭轨迹优化问题,为相关理论研究和工程应用提供参考和技术支持。 展开更多
关键词 差分进化算法 Chebyshev混沌映射 反向学习 DE-SQP组合优化 伪谱法 轨迹优化
原文传递
基于改进差分松鼠搜索算法MPPT控制策略
10
作者 崔敏 张云锐 +2 位作者 武奇生 李林宜 李艳波 《智能建筑电气技术》 2025年第3期17-24,47,共9页
为了解决传统最大功率点跟踪(MPPT)控制方法易陷入局部功率最优值,收敛速度慢,精度较低的问题,在松鼠搜索算法(SSA)的基础上提出了一种基于差分改进松鼠搜素算法(IDSSA)的MPPT控制策略。首先使用改进Tent混沌映射代替标准SSA算法中的随... 为了解决传统最大功率点跟踪(MPPT)控制方法易陷入局部功率最优值,收敛速度慢,精度较低的问题,在松鼠搜索算法(SSA)的基础上提出了一种基于差分改进松鼠搜素算法(IDSSA)的MPPT控制策略。首先使用改进Tent混沌映射代替标准SSA算法中的随机数分布对算法进行初始化,使算法初始化种群具有良好的多样性且分布均匀;其次采用差分进化算法中经过优化的差分变异机制,通过对初始种群的变异和交叉操作,进一步提升算法全局搜索与局部收敛能力;为了兼顾算法的全局搜索与局部开发性能,通过对SSA算法中捕食者概率与莱维飞行因子进行非线性递减优化,使算法具有更好的寻优精度。仿真结果表明,在均匀光照,静态阴影和瞬时变化阴影条件下,IDSSA算法较基础SSA算法以及其他几种改进启发式算法拥有更好的跟踪精度和收敛速度,有效解决光伏系统在复杂环境下的功率跟踪难题。 展开更多
关键词 光伏系统 局部遮荫 最大功率点追踪 松鼠搜索算法 Tent混沌映射 差分进化算法 莱维飞行因子
原文传递
融入差分进化与透镜成像的黑翅鸢优化算法
11
作者 沈越 陈丽敏 王一荻 《牡丹江师范学院学报(自然科学版)》 2025年第4期9-13,共5页
提出一种改进的黑翅鸢优化算法(DBKA).用sine混沌映射初始化种群,增加种群多样性;引入差分进化机制增强算法的全局搜索能力,并通过动态调整缩放因子和交叉概率因子提高全局搜索能力;采用透镜成像反向学习与高斯扰动相结合,增强算法的全... 提出一种改进的黑翅鸢优化算法(DBKA).用sine混沌映射初始化种群,增加种群多样性;引入差分进化机制增强算法的全局搜索能力,并通过动态调整缩放因子和交叉概率因子提高全局搜索能力;采用透镜成像反向学习与高斯扰动相结合,增强算法的全局探索能力和收敛性.改进的黑翅鸢算法具有更好的鲁棒性、适应性,可加快算法收敛速度,有效避免早熟收敛的情况. 展开更多
关键词 黑翅鸢算法 sine混沌映射 差分进化
在线阅读 下载PDF
基于混沌差分进化算法的通信网络流量调度优化
12
作者 贺易 叶露 汤弋 《微型电脑应用》 2025年第8期164-168,共5页
通信网络的流量调度优化常采用差分进化算法进行求解,容易陷入局部最优解,因此,提出基于混沌差分进化算法的通信网络流量调度优化方法。将通信网络拓扑结构描述为有向图形式,建立门控调度机制。利用多元回归分析方法设置通信网络流量队... 通信网络的流量调度优化常采用差分进化算法进行求解,容易陷入局部最优解,因此,提出基于混沌差分进化算法的通信网络流量调度优化方法。将通信网络拓扑结构描述为有向图形式,建立门控调度机制。利用多元回归分析方法设置通信网络流量队列均衡配置条件。以端到端时延最小化、带宽占用量最小化为目标,构造通信网络流量调度优化目标函数。应用混沌差分进化算法对目标函数进行迭代求解,获取最佳流量调度优化方案。实验结果表明,混沌差分进化算法迭代15次就得到了最小目标函数取值,通信网络平均端到端时延低于40 ms,更好地满足了通信网络流量调度需求。 展开更多
关键词 混沌差分进化算法 通信网络 流量调度 均衡控制
在线阅读 下载PDF
基于自适应混沌精英变异差分进化算法的中长期水资源优化调度 被引量:4
13
作者 何耀耀 胡千帝 张召 《长江科学院院报》 CSCD 北大核心 2024年第10期14-22,共9页
中长期水资源优化调度问题是一类具有非线性、多阶段、高维度和多重约束特性的复杂优化问题。针对经典智能算法在求解此类问题时容易陷入局部最优或者收敛效率较低等问题,应用混沌搜索策略增强算法的探索能力,同时改进传统算法的变异方... 中长期水资源优化调度问题是一类具有非线性、多阶段、高维度和多重约束特性的复杂优化问题。针对经典智能算法在求解此类问题时容易陷入局部最优或者收敛效率较低等问题,应用混沌搜索策略增强算法的探索能力,同时改进传统算法的变异方式,向精英个体学习以提升收敛速度,提出自适应混沌精英变异差分进化(ACEDE)算法。将所提出的算法应用于珠江三角洲水资源配置工程中长期调度进行实例研究,并与经典智能算法进行对比分析。结果表明:①ACEDE算法在全局探索能力、收敛精度与速度上实现了全面提升,并且表现出良好的适应性。相较于传统差分进化(DE)算法,2030年水平年6月份和2040年水平年6月份调度中ACEDE算法所计算的电费成本分别节省了74.23万元和23.55万元,降低了6.68%和1.52%。②在珠江三角洲水资源配置工程中长期调度中,充分利用调蓄水库库容满足高分水量需求,同时放缓月末补水充库过程,能够有效控制泵站的平稳运行,达到降低电费成本的目的。 展开更多
关键词 水资源优化调度 差分进化算法 混沌映射 精英变异 珠江三角洲水资源配置工程
在线阅读 下载PDF
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
14
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
在线阅读 下载PDF
基于改进差分进化算法的跨平台武器目标分配方法 被引量:3
15
作者 隆雨佟 陈爱国 +1 位作者 史红权 曾黎 《系统工程与电子技术》 EI CSCD 北大核心 2024年第3期953-962,共10页
现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗... 现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。 展开更多
关键词 跨平台武器目标分配 编队防空 混沌映射 差分进化 混沌种群重构-带存档的自适应差分进化算法
在线阅读 下载PDF
基于改进差分算法的数据链时隙分配方法 被引量:2
16
作者 朱宇挺 苏焕坤 +2 位作者 冯小东 雷诗洁 傅妍芳 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1242-1250,共9页
针对当前时隙分配策略具有算法单一、容易陷入局部最优、泛化能力弱等问题,基于差分进化算法,引入了混沌算法、自适应变异交叉算法和问题解处理机制,提出了一种基于改进差分进化算法的时隙分配策略。利用混沌算法初始化种群,增加种群多... 针对当前时隙分配策略具有算法单一、容易陷入局部最优、泛化能力弱等问题,基于差分进化算法,引入了混沌算法、自适应变异交叉算法和问题解处理机制,提出了一种基于改进差分进化算法的时隙分配策略。利用混沌算法初始化种群,增加种群多样性避免算法过早收敛;利用选择概率参数使得交叉和变异过程更加灵活,使算法初期增加搜索范围,算法后期增加获取全局最优解的概率。实验结果表明:该算法时隙分配均衡度、稳定性、算法效率和泛化能力均优于差分算法和遗传算法,时隙分配均衡度和算法效率更高、稳定性更好、泛化能力更强。 展开更多
关键词 战术数据链 时隙分配 差分进化算法 混沌映射 时隙方差
原文传递
基于混合多策略免疫算法的配送中心选址研究 被引量:2
17
作者 都威 黄琦 刘妍 《物流科技》 2024年第23期8-13,共6页
为提升基本免疫算法的寻优性能,降低城市物流配送中心选址的成本,提出一种混合多策略免疫算法。首先,使用Tent混沌映射快速构成均匀分布的初始解,丰富种群的多样性;其次,结合差分进化算法中的更新机制增强免疫算法的寻优能力,并使用线... 为提升基本免疫算法的寻优性能,降低城市物流配送中心选址的成本,提出一种混合多策略免疫算法。首先,使用Tent混沌映射快速构成均匀分布的初始解,丰富种群的多样性;其次,结合差分进化算法中的更新机制增强免疫算法的寻优能力,并使用线性增量规则平衡算法的全局和局部搜索能力;最后,采用非均匀变异策略对整个解空间进行干扰,避免算法的“早熟”现象。实验结果表明,所提出的算法收敛速度更快,鲁棒性更好,并能在短时间内给出物流成本更低的选址方案。 展开更多
关键词 选址应用 免疫算法 混沌映射 差分进化 非均匀变异
在线阅读 下载PDF
基于非线性自适应比例因子的雪豹优化算法
18
作者 崔铭悦 莫愿斌 +1 位作者 王子豪 胡飓风 《计算机技术与发展》 2024年第4期212-220,共9页
针对雪豹优化算法在求解复杂优化问题时,存在全局勘探能力不足、寻优精度低等问题,提出一种改进的雪豹优化算法。首先,基于分段Logistic混沌映射初始化从而提高初始种群多样性;其次,引入非线性比例因子用于平衡算法的全局勘探能力和局... 针对雪豹优化算法在求解复杂优化问题时,存在全局勘探能力不足、寻优精度低等问题,提出一种改进的雪豹优化算法。首先,基于分段Logistic混沌映射初始化从而提高初始种群多样性;其次,引入非线性比例因子用于平衡算法的全局勘探能力和局部开发能力;然后,提出了一种差分变异策略,在第一次种群更新位置后,使用5个随机个体提高全局搜索能力和算法收敛能力,在第二次种群更新位置后,使用3个随机个体保证在求解过程的中后期也具有一定的全局勘探能力,尽可能避免陷入局部最优。通过在IEEE CEC2022基准函数测试集上测试,并与其他算法进行比较,结果表明所提出的算法在种群质量、求解精度以及算法稳定性上均有较大提升。最后将所提出的算法应用于工程优化,计算结果进一步证实了算法的强优化能力。 展开更多
关键词 雪豹优化算法 混沌映射 非线性自适应比例因子 差分进化算子 约束优化问题
在线阅读 下载PDF
基于CDE的空间直线度误差评定
19
作者 薛耀阳 徐旭松 +2 位作者 王树刚 刘文君 耿浩然 《工具技术》 北大核心 2024年第12期128-136,共9页
针对空间直线度误差评定中求解精度不高等问题,提出基于改进差分进化算法的空间直线度误差评定方法。使用产品技术几何规范(GPS)公差标准,通过最小二乘法计算得到符合最小区域法的空间直线度数学模型;将差分进化算法(DE)加入Cubic混沌... 针对空间直线度误差评定中求解精度不高等问题,提出基于改进差分进化算法的空间直线度误差评定方法。使用产品技术几何规范(GPS)公差标准,通过最小二乘法计算得到符合最小区域法的空间直线度数学模型;将差分进化算法(DE)加入Cubic混沌映射使种群初始化,并对算法中变异因子和交叉概率进行改进,经测试函数仿真对比证实,该算法在收敛速度、精度上均有一定提高。对两个评定实例进行误差评定,研究结果表明:相比于HTMLBO,PSO,DE,ABC算法,CDE算法在计算精度、速度、稳定性上更具有优势,在同一零件的内径上提取截面圆圆心坐标时,规定最佳提取点数可以有效降低算法误差。 展开更多
关键词 计量学 误差评定 空间直线度 Cubic混沌映射 差分进化算法
在线阅读 下载PDF
基于混沌搜索的自适应差分进化算法 被引量:23
20
作者 卢有麟 周建中 +1 位作者 李英海 覃晖 《计算机工程与应用》 CSCD 北大核心 2008年第10期31-33,39,共4页
提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全... 提出一种基于混沌搜索的自适应差分进化算法(CADE),该算法在计算过程中自适应地调整交叉率,在搜索初期保持种群多样性的同时增强算法的全局收敛性。具有较强局部遍历搜索性能的混沌搜索的引入使得算法具有较好的求解精度,增加搜索到全局最优解的概率。对几种典型的测试函数对CADE进行了测试,实验结果表明,该算法能有效地避免早熟收敛,具有良好的全局收敛性。 展开更多
关键词 差分进化算法 自适应 混沌搜索 全局优化
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部