Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid ...Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid of curvularin and purine.The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance(NMR)spectroscopy,X-ray diffraction,electronic circular dichroism(ECD)calculations,^(13)C NMR calculation,modified Mosher's method,and chemical derivatization.Investigation of anti-inflammatory activities revealed that compounds 7-9,11,12,14,15,and 18 exhibited significant suppressive effects against lipopolysaccharide(LPS)-induced nitric oxide(NO)production in murine macrophage RAW264.7 cells,with IC_(50)values ranging from 0.44 to 4.40μmol·L^(-1).Furthermore,these bioactive compounds were found to suppress the expression of inflammation-related proteins,including inducible NO synthase(i NOS),cyclooxygenase-2(COX-2),NLR family pyrin domain-containing protein 3(NLRP3),and nuclear factor kappa-B(NF-κB).Additional studies demonstrated that the novel compound 7 possessed potent antiinflammatory activity by inhibiting the transcription of inflammation-related genes,downregulating the expression of inflammation-related proteins,and inhibiting the release of inflammatory cytokines,indicating its potential application in the treatment of inflammatory diseases.展开更多
With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of hig...With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation.展开更多
Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,ther...Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.展开更多
The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in...The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.展开更多
With the continuous advancement of communication and unmanned aerial vehicle(UAV)technologies,the collaborative operations of diverse platforms,including UAVs and ground vehicles,have been significantly promoted.Howev...With the continuous advancement of communication and unmanned aerial vehicle(UAV)technologies,the collaborative operations of diverse platforms,including UAVs and ground vehicles,have been significantly promoted.However,battlefield uncertainties,such as equipment failures and enemy attacks,can impact these collaborative operations'stability and communication efficiency.To this end,we design a highly destruction-resistant air-ground cooperative resilient networking platform that aims to enhance the robustness of network communications by integrating ground vehicle information for UAV network deployment.It then incorporates the concept of virtual guiding force,enabling the UAV swarm to adaptively configure its network layout based on ground vehicle information,thereby improving network destruction resistance.Simulation results demonstrate that the UAV swarm involved in the proposed platform exhibits balanced flight energy consumption and excellent performance in network destruction resistance.展开更多
Named data networking(NDNs)is an idealized deployment of information-centric networking(ICN)that has attracted attention from scientists and scholars worldwide.A distributed in-network caching scheme can efficiently r...Named data networking(NDNs)is an idealized deployment of information-centric networking(ICN)that has attracted attention from scientists and scholars worldwide.A distributed in-network caching scheme can efficiently realize load balancing.However,such a ubiquitous caching approach may cause problems including duplicate caching and low data diversity,thus reducing the caching efficiency of NDN routers.To mitigate these caching problems and improve the NDN caching efficiency,in this paper,a hierarchical-based sequential caching(HSC)scheme is proposed.In this scheme,the NDN routers in the data transmission path are divided into various levels and data with different request frequencies are cached in distinct router levels.The aim is to cache data with high request frequencies in the router that is closest to the content requester to increase the response probability of the nearby data,improve the data caching efficiency of named data networks,shorten the response time,and reduce cache redundancy.Simulation results show that this scheme can effectively improve the cache hit rate(CHR)and reduce the average request delay(ARD)and average route hop(ARH).展开更多
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a...The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.展开更多
The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic c...The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic complementarity of multiple bands are crucial for enhancing the spectrum efficiency,reducing network energy consumption,and ensuring a consistent user experience.This paper investigates the present researches and challenges associated with deployment of multi-band integrated networks in existing infrastructures.Then,an evolutionary path for integrated networking is proposed with the consideration of maturity of emerging technologies and practical network deployment.The proposed design principles for 6G multi-band integrated networking aim to achieve on-demand networking objectives,while the architecture supports full spectrum access and collaboration between high and low frequencies.In addition,the potential key air interface technologies and intelligent technologies for integrated networking are comprehensively discussed.It will be a crucial basis for the subsequent standards promotion of 6G multi-band integrated networking technology.展开更多
1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring na...1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring nations and regions,including the United States,Europe,China,and Russia.Specifically,Space X’s Starlink project has deployed over 6750 satellites,2while One Web has completed its initial phase of satellite constellation deployment with more than 600 satellites.展开更多
(±)-Penicithrones A–D(1a/1b–4a/4b),four novel pairs of anthrone–cyclopentenone heterodimers characterized by a distinctive bridged 6/6/6−5 tetracyclic core skeleton,together with three previously identified co...(±)-Penicithrones A–D(1a/1b–4a/4b),four novel pairs of anthrone–cyclopentenone heterodimers characterized by a distinctive bridged 6/6/6−5 tetracyclic core skeleton,together with three previously identified compounds(5–7),were isolated from the crude extract of the mangrove-derived fungus Penicillium sp.,guided by heteronuclear single quantum correlation(HSQC)-based small molecule accurate recognition technology(SMART 2.0)and liquid chromatography-tandem mass spectrometry(LC-MS/MS)-based molecular networking.The structural elucidation of new compounds was accomplished through comprehensive spectroscopic analysis,and their absolute configurations were determined using DP4+^(13)C nuclear magnetic resonance(NMR)calculations and electronic circular dichroism(ECD)calculations.Compounds 1a/1b–4a/4b demonstrated moderate cytotoxicity against three human cancer cell lines HeLa,HCT116 and MCF-7 with half maximal inhibitory concentration(IC50)values ranging from 15.95±1.64 to 28.56±2.59μmol·L–1.展开更多
Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited late...Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited latency.DDoS attacks pose significant risks to entrepreneurial businesses,preventing legitimate customers from accessing their websites.These attacks require intelligent analytics before processing service requests.Distributed denial of service(DDoS)attacks exploit vulnerabilities in IoT devices by launchingmulti-point distributed attacks.These attacks generate massive traffic that overwhelms the victim’s network,disrupting normal operations.The consequences of distributed denial of service(DDoS)attacks are typically more severe in software-defined networks(SDNs)than in traditional networks.The centralised architecture of these networks can exacerbate existing vulnerabilities,as these weaknesses may not be effectively addressed in this model.The preliminary objective for detecting and mitigating distributed denial of service(DDoS)attacks in software-defined networks(SDN)is to monitor traffic patterns and identify anomalies that indicate distributed denial of service(DDoS)attacks.It implements measures to counter the effects ofDDoS attacks,and ensure network reliability and availability by leveraging the flexibility and programmability of SDN to adaptively respond to threats.The authors present a mechanism that leverages the OpenFlow and sFlow protocols to counter the threats posed by DDoS attacks.The results indicate that the proposed model effectively mitigates the negative effects of DDoS attacks in an SDN environment.展开更多
The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compound...The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compounds 1-5 featured new carbon skeletons in which phloroglucinol derivatives were coupled with lupane-and dammarane-type triterpenoids through different linkage patterns.Their structures and absolute configurations were elucidated by comprehensive analysis of spectroscopic data and quantum chemical calculations.Biosynthetic pathways for compounds 1-5 were proposed on the basis of the coexisting precursors.Guided by the biogenetic pathways,the biomimetic synthesis of compound 1 was also achieved.Additionally,compounds 2,3,and 5 exhibited potent antiviral activities against herpes simplex virus type-1(HSV-1)infection,and compounds 2 and 5 displayed significant anti-inflammatory activities on RAW264.7 cells.展开更多
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ...Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.展开更多
Under the guidance of the approach which integrates molecular networking,MolNetEnhancer and Net-work Annotation Propagation(NAP),daphnaltaicanoids A and B(1 and 2)with unprecedented 9-oxa-tetracyclo[6.6.1.0^(2,6).0^(8...Under the guidance of the approach which integrates molecular networking,MolNetEnhancer and Net-work Annotation Propagation(NAP),daphnaltaicanoids A and B(1 and 2)with unprecedented 9-oxa-tetracyclo[6.6.1.0^(2,6).0^(8,13)]pentadecane and tetracyclo[5.3.0.1^(2,5).2^(4,11)]tridecane central frameworks were iso-lated from Daphne altaica Pall.,representing two types of unparalleled meroterpenoid cores.Their struc-tures were elucidated by extensive spectroscopic analysis,nuclear magnetic resonance(NMR)calcula-tions,DP4+analysis and electronic circular dichroism(ECD)calculations.The plausible biosynthetic path-ways for 1 and 2 were postulated.Biologically,2 exerted potent neuroprotective activities which were su-perior to trolox at 12.5 and 25μmol/L.Moreover,1 and 2 exhibited more noticeable acetylcholinesterase inhibitory activities than donepezil.Molecular docking simulations were performed to explore the inter-molecular interaction of compounds 1 and 2 with acetylcholinesterase.The bioactivity evaluation results highlight the prospects of 1 and 2 as a novel category of neurological agents.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-see...Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
基金funded by the National Key Research and Development Program of China(No.2022YFC2804101)the Guangdong Provincial Key R&D Program(No.2023B1111050011)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010432)the Guangzhou Basic and Applied Basic Research Foundation(No.202201010305)the High-Level Talents Special Program of Zhejiang(No.2022R52036)。
文摘Guided by molecular networking,nine novel curvularin derivatives(1-9)and 16 known analogs(10-25)were isolated from the hydrothermal vent sediment fungus Penicillium sp.HL-50.Notably,compounds 5-7 represented a hybrid of curvularin and purine.The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance(NMR)spectroscopy,X-ray diffraction,electronic circular dichroism(ECD)calculations,^(13)C NMR calculation,modified Mosher's method,and chemical derivatization.Investigation of anti-inflammatory activities revealed that compounds 7-9,11,12,14,15,and 18 exhibited significant suppressive effects against lipopolysaccharide(LPS)-induced nitric oxide(NO)production in murine macrophage RAW264.7 cells,with IC_(50)values ranging from 0.44 to 4.40μmol·L^(-1).Furthermore,these bioactive compounds were found to suppress the expression of inflammation-related proteins,including inducible NO synthase(i NOS),cyclooxygenase-2(COX-2),NLR family pyrin domain-containing protein 3(NLRP3),and nuclear factor kappa-B(NF-κB).Additional studies demonstrated that the novel compound 7 possessed potent antiinflammatory activity by inhibiting the transcription of inflammation-related genes,downregulating the expression of inflammation-related proteins,and inhibiting the release of inflammatory cytokines,indicating its potential application in the treatment of inflammatory diseases.
文摘With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd.(Grant No.H20230317).
文摘Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.
基金supported in part by National Key R&D Program of China(Grant No.2022YFC3803700)in part by the National Natural Science Foundation of China(Grant No.92067102)in part by the project of Beijing Laboratory of Advanced Information Networks.
文摘The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia,under Project RSPD2025R681。
文摘With the continuous advancement of communication and unmanned aerial vehicle(UAV)technologies,the collaborative operations of diverse platforms,including UAVs and ground vehicles,have been significantly promoted.However,battlefield uncertainties,such as equipment failures and enemy attacks,can impact these collaborative operations'stability and communication efficiency.To this end,we design a highly destruction-resistant air-ground cooperative resilient networking platform that aims to enhance the robustness of network communications by integrating ground vehicle information for UAV network deployment.It then incorporates the concept of virtual guiding force,enabling the UAV swarm to adaptively configure its network layout based on ground vehicle information,thereby improving network destruction resistance.Simulation results demonstrate that the UAV swarm involved in the proposed platform exhibits balanced flight energy consumption and excellent performance in network destruction resistance.
基金supported in part by the National Natural Science Foundation of China under Grant 61972424 and 62372479in part by the High Value Intellectual Property Cultivation Project of Hubei Province,China,under grant D2021002094+1 种基金in part by JSPS KAKENHI under Grants JP16K00117 and JP19K20250in part by the Leading Initiative for Excellent Young Researchers(LEADER),MEXT,Japan,and KDDI Foundation.
文摘Named data networking(NDNs)is an idealized deployment of information-centric networking(ICN)that has attracted attention from scientists and scholars worldwide.A distributed in-network caching scheme can efficiently realize load balancing.However,such a ubiquitous caching approach may cause problems including duplicate caching and low data diversity,thus reducing the caching efficiency of NDN routers.To mitigate these caching problems and improve the NDN caching efficiency,in this paper,a hierarchical-based sequential caching(HSC)scheme is proposed.In this scheme,the NDN routers in the data transmission path are divided into various levels and data with different request frequencies are cached in distinct router levels.The aim is to cache data with high request frequencies in the router that is closest to the content requester to increase the response probability of the nearby data,improve the data caching efficiency of named data networks,shorten the response time,and reduce cache redundancy.Simulation results show that this scheme can effectively improve the cache hit rate(CHR)and reduce the average request delay(ARD)and average route hop(ARH).
基金supported by the IITP(Institute of Information&Communications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korean government(Ministry of Science and ICT)(IITP-2025-RS-2024-00438056).
文摘The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.
基金supported by China’s National Key R&D Program(Project Number:2022YFB2902100)。
文摘The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic complementarity of multiple bands are crucial for enhancing the spectrum efficiency,reducing network energy consumption,and ensuring a consistent user experience.This paper investigates the present researches and challenges associated with deployment of multi-band integrated networks in existing infrastructures.Then,an evolutionary path for integrated networking is proposed with the consideration of maturity of emerging technologies and practical network deployment.The proposed design principles for 6G multi-band integrated networking aim to achieve on-demand networking objectives,while the architecture supports full spectrum access and collaboration between high and low frequencies.In addition,the potential key air interface technologies and intelligent technologies for integrated networking are comprehensively discussed.It will be a crucial basis for the subsequent standards promotion of 6G multi-band integrated networking technology.
基金co-supported by the National Natural Science Foundation of China(Nos.62225103,U2441227,U24A20211)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-22-002C2)。
文摘1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring nations and regions,including the United States,Europe,China,and Russia.Specifically,Space X’s Starlink project has deployed over 6750 satellites,2while One Web has completed its initial phase of satellite constellation deployment with more than 600 satellites.
基金supported by the National Key Research and Development Program of China(No.2022YFC2303100)the National Natural Science Foundation of China(Nos.32022002 and 21977113).
文摘(±)-Penicithrones A–D(1a/1b–4a/4b),four novel pairs of anthrone–cyclopentenone heterodimers characterized by a distinctive bridged 6/6/6−5 tetracyclic core skeleton,together with three previously identified compounds(5–7),were isolated from the crude extract of the mangrove-derived fungus Penicillium sp.,guided by heteronuclear single quantum correlation(HSQC)-based small molecule accurate recognition technology(SMART 2.0)and liquid chromatography-tandem mass spectrometry(LC-MS/MS)-based molecular networking.The structural elucidation of new compounds was accomplished through comprehensive spectroscopic analysis,and their absolute configurations were determined using DP4+^(13)C nuclear magnetic resonance(NMR)calculations and electronic circular dichroism(ECD)calculations.Compounds 1a/1b–4a/4b demonstrated moderate cytotoxicity against three human cancer cell lines HeLa,HCT116 and MCF-7 with half maximal inhibitory concentration(IC50)values ranging from 15.95±1.64 to 28.56±2.59μmol·L–1.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited latency.DDoS attacks pose significant risks to entrepreneurial businesses,preventing legitimate customers from accessing their websites.These attacks require intelligent analytics before processing service requests.Distributed denial of service(DDoS)attacks exploit vulnerabilities in IoT devices by launchingmulti-point distributed attacks.These attacks generate massive traffic that overwhelms the victim’s network,disrupting normal operations.The consequences of distributed denial of service(DDoS)attacks are typically more severe in software-defined networks(SDNs)than in traditional networks.The centralised architecture of these networks can exacerbate existing vulnerabilities,as these weaknesses may not be effectively addressed in this model.The preliminary objective for detecting and mitigating distributed denial of service(DDoS)attacks in software-defined networks(SDN)is to monitor traffic patterns and identify anomalies that indicate distributed denial of service(DDoS)attacks.It implements measures to counter the effects ofDDoS attacks,and ensure network reliability and availability by leveraging the flexibility and programmability of SDN to adaptively respond to threats.The authors present a mechanism that leverages the OpenFlow and sFlow protocols to counter the threats posed by DDoS attacks.The results indicate that the proposed model effectively mitigates the negative effects of DDoS attacks in an SDN environment.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Nos.2020B1515120066 and 2022A1515010010)the National Natural Science Foundation of China[Nos.82293681(82293680)and 82273822]+3 种基金the Science and Technology Key Project of Guangdong Province(No.2020B1111110004)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01Y036)the Fundamental Research Funds for the Central Universitiesthe support of K.C.Wong Education Foundation。
文摘The first phloroglucinol-triterpenoid hybrids,myrtphlotritins A-E(1-5),were rapidly recognized and isolated from two species of Myrtaceae by employing the building blocks-based molecular network(BBMN)strategy.Compounds 1-5 featured new carbon skeletons in which phloroglucinol derivatives were coupled with lupane-and dammarane-type triterpenoids through different linkage patterns.Their structures and absolute configurations were elucidated by comprehensive analysis of spectroscopic data and quantum chemical calculations.Biosynthetic pathways for compounds 1-5 were proposed on the basis of the coexisting precursors.Guided by the biogenetic pathways,the biomimetic synthesis of compound 1 was also achieved.Additionally,compounds 2,3,and 5 exhibited potent antiviral activities against herpes simplex virus type-1(HSV-1)infection,and compounds 2 and 5 displayed significant anti-inflammatory activities on RAW264.7 cells.
基金supported by the National Natural Science Foundation of China(32001733)the Earmarked fund for CARS(CARS-47)+3 种基金Guangxi Natural Science Foundation Program(2021GXNSFAA196023)Guangdong Basic and Applied Basic Research Foundation(2021A1515010833)Young Talent Support Project of Guangzhou Association for Science and Technology(QT20220101142)the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2020TD69)。
文摘Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.
基金supported by the National Natural Science Foundation of China(Nos.82073736,81872766)Science and Technology Planning Project of Liaoning Province(No.2021JH1/10400049)Liaoning revitalization talents program(Nos.XLYC2002066,XLYC2007180).
文摘Under the guidance of the approach which integrates molecular networking,MolNetEnhancer and Net-work Annotation Propagation(NAP),daphnaltaicanoids A and B(1 and 2)with unprecedented 9-oxa-tetracyclo[6.6.1.0^(2,6).0^(8,13)]pentadecane and tetracyclo[5.3.0.1^(2,5).2^(4,11)]tridecane central frameworks were iso-lated from Daphne altaica Pall.,representing two types of unparalleled meroterpenoid cores.Their struc-tures were elucidated by extensive spectroscopic analysis,nuclear magnetic resonance(NMR)calcula-tions,DP4+analysis and electronic circular dichroism(ECD)calculations.The plausible biosynthetic path-ways for 1 and 2 were postulated.Biologically,2 exerted potent neuroprotective activities which were su-perior to trolox at 12.5 and 25μmol/L.Moreover,1 and 2 exhibited more noticeable acetylcholinesterase inhibitory activities than donepezil.Molecular docking simulations were performed to explore the inter-molecular interaction of compounds 1 and 2 with acetylcholinesterase.The bioactivity evaluation results highlight the prospects of 1 and 2 as a novel category of neurological agents.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
文摘Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.