期刊文献+
共找到9,770篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
1
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Structural design of a wide-ridge mid-wave infrared quantum cascade laser based on a supersymmetric waveguide
2
作者 DU Shu-Hao ZHENG Xian-Tong +7 位作者 JIA Han CUI Jin-Tao ZHANG Shi-Ya LIU Yuan FENG Yu-Lin ZHANG Chun-Qian LIU Ming ZHANG Dong-Liang 《红外与毫米波学报》 北大核心 2025年第3期452-458,共7页
In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particul... In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance. 展开更多
关键词 quantum cascade laser mode competition SUPERSYMMETRY MID-INFRARED auxiliary waveguides
在线阅读 下载PDF
W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining
3
作者 Wang Huanyu Duan Jingrui +5 位作者 Wang Zhanliang Tang Haichen Lu Zhigang Wang Shaomeng Gong Huarong Gong Yubin 《强激光与粒子束》 北大核心 2025年第12期19-25,共7页
[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,... [Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs. 展开更多
关键词 double electron beam folded waveguide slow-wave structure power combining beam-wave interaction W-BAND
在线阅读 下载PDF
Efficient multi-millijoule THz wave generation from laser interactions with a cylindrical GaAs waveguide
4
作者 Zahra Ghanavati Hamid Reza Zangeneh 《红外与毫米波学报》 北大核心 2025年第4期586-593,共8页
This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conv... This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conversion of laser energy into THz waves.Through meticulous investigation,valuable insights into optimizing THz generation processes for practical applications were unearthed.By investigating Hertz potentials,an eigen-value equation for the solutions of the guided modes(i.e.,eigenvalues)was found.The effects of various param-eters,including the effective mode index and the laser pulse power,on the electric field components of THz radia-tion,including the fundamental TE(transverse electric)and TM(transverse magnetic)modes,were evaluated.By analyzing these factors,this research elucidated the nuanced mechanisms governing THz wave generation within cylindrical GaAs waveguides,paving the way for refined methodologies and enhanced efficiency.The sig-nificance of cylindrical GaAs waveguides extends beyond their roles as mere facilitators of THz generation;their design and fabrication hold the key to unlocking the potential for compact and portable THz systems.This trans-formative capability not only amplifies the efficiency of THz generation but also broadens the horizons of practical applications. 展开更多
关键词 terahertz waves cylindrical waveguides gallium arsenide(GaAs)matter nonlinear optical processes multi-millijoule THz pulses
在线阅读 下载PDF
Design of a terahertz slotted waveguide array antenna based on photonic crystal
5
作者 PAN Wu YE Kuan +3 位作者 ZHANG Zhen LI Renpu QIU Sen HUANG Lei 《Optoelectronics Letters》 2025年第12期705-710,共6页
In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide a... In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide at the bottom of the antenna,coupled to photonic crystal waveguide through photonic crystal cavity,and radiated outward through slots at the top layer of antenna.The simulation results show that the antenna achieves a peak gain of 13.45 dBi at 360 GHz,a half-power beam width of 10.9°,and a side lobe level of−13.9 dB.The antenna based on photonic crystal has the advantages of low profile,low loss,and high radiation efficiency,which can be applied to terahertz wireless communication systems. 展开更多
关键词 terahertz slotted waveguide array antenna side lo TERAHERTZ electromagnetic wave photonic crystal cavityand photonic crystalwhich rectangular waveguide photonic crystal waveguide
原文传递
Multi-Fano resonances sensing based on a non-through metal-insulatormetal waveguide coupling D-shaped cavity
6
作者 ZHAO Xiao-long CHANG Xu-yan +2 位作者 LIU Yan-li ZHANG Yan-Jun ZHANG Zhi-dong 《中国光学(中英文)》 北大核心 2025年第6期1484-1494,共11页
A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refracti... A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications. 展开更多
关键词 surface plasmon polaritons metal-insulator-metal(MIM)waveguide D-shaped resonant cavity double Fano resonance refractive index sensor
在线阅读 下载PDF
Unidirectional and robust propagating surface magnetoplasmon in magneto-optical cylindrical waveguides with remanence
7
作者 WANG Zhuoyuan CHENG Peihong YU Ping 《Optoelectronics Letters》 2025年第10期577-581,共5页
Ferrimagnetic materials exhibiting remanence can be used to achieve unidirectional electromagnetic-field propagation in the form of magnetoplasmons(MPs)in the subwavelength regime.This study investigates the MP proper... Ferrimagnetic materials exhibiting remanence can be used to achieve unidirectional electromagnetic-field propagation in the form of magnetoplasmons(MPs)in the subwavelength regime.This study investigates the MP properties and various guiding modes in a hollow cylindrical waveguide made of materials that exhibit remanence.Pattern analysis and numerical simulations are used to demonstrate that dispersion relationships and electromagnetic-field distribution are strongly affected by the operating frequency and physical dimensions of the structure.In addition,the existence of two different guiding modes is proved,namely regular and surface-wave modes.By adjusting the operating frequency and reducing the diameter of the hollow cylinder,the regular mode can be suppressed so as to only retain the surface-wave mode,which enables unidirectional MP propagation in the cylindrical waveguide.Moreover,the unidirectional surface-wave mode is robust to backscattering due to surface roughness and defects,which makes it very useful for application in field-enhancement devices. 展开更多
关键词 guiding modes numerical simulations remanence ferrimagnetic materials hollow cylindrical waveguide dispersion relationships ferrimagnetic materials magneto optical cylindrical waveguides unidirectional propagation
原文传递
A Multi-Layer Progressive Analysis Method for Collision Energy Flow in Rail Trains
8
作者 Jingke Zhang Tao Zhu +4 位作者 Xiaorui Wang Bing Yang Shoune Xiao Guangwu Yang Yuru Li 《Chinese Journal of Mechanical Engineering》 2025年第5期425-439,共15页
The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the liv... The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future. 展开更多
关键词 Train Cllision multi-layer Progression Energy Flow Energy Conversion Energy Dissipation Energy Transfer
在线阅读 下载PDF
A triple-band miniaturized end-fire antenna based on odd-mode spoof surface plasmonic polariton waveguide resonator
9
作者 BAI Yukun MAO Mengqun 《Optoelectronics Letters》 2025年第8期462-467,共6页
A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication chan... A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication channels and less antenna sizes,multi-band antennas are currently under intensive investigation.By a novel feeding method,three odd modes are excited on an SSPP waveguide resonator,which performs as an end-fire antenna operating at three bands,7.15-7.26 GHz,11.6-12.2 GHz and 13.5-13.64 GHz.It exhibits reasonably high and stable maximum gains of 5.26 dBi,7.97 dBi and 10.1 dBi and maximum efficiencies of 64%,92%and 98%at the three bands,respectively.Moreover,in the second band,the main beam angle shows a frequency dependence with a total scanning angle of 19°.The miniaturized triple-band antenna has a great potential in wireless communication systems,satellite communication and radar systems. 展开更多
关键词 odd modes waveguide resonatorwhich triple band antenna end fire antenna feeding methodthree spoof surface plasmonic polariton sspp waveguide communication channels miniaturized antenna
原文传递
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
10
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
Experimental demonstration of silicon nitride waveguide gratings with excellent efficiency and divergence angle
11
作者 Zhaozhen Chen Wenling Li +4 位作者 Qian Wang Enfeng Liu Xinqun Zhang Jingwei Liu Zhengsheng Han 《Chinese Physics B》 2025年第5期431-435,共5页
Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optic... Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optical waveguides is proposed,which shows a simple fabrication process,high upward diffraction efficiency,and lower far-field divergence angle.The measured results of the diffraction grating at a wavelength of 905 nm show the average upward diffraction efficiency of 90.5% and average far-field divergence angle of 0.154°,which shows a good agreement with the design results with the upward diffraction efficiency of 91.6%and far-field divergence angle of 0.105°. 展开更多
关键词 silicon nitride photonic platform optical waveguides
原文传递
Supercontinuum generation using long-period-grating waveguides on silicon
12
作者 Hongzhi Xiong Xinmin Yao +7 位作者 Qingrui Yao Qingbo Wu Hongyuan Cao Yaoxin Bao Fei Huang Zejie Yu Ming Zhang Daoxin Dai 《Advanced Photonics Nexus》 2025年第1期138-144,共7页
Research on supercontinuum sources on silicon has made significant progress in the past few decades.However,conventional approaches to broaden the spectral bandwidth often rely on complex and critical dispersion engin... Research on supercontinuum sources on silicon has made significant progress in the past few decades.However,conventional approaches to broaden the spectral bandwidth often rely on complex and critical dispersion engineering by optimizing the core thickness or introducing the cladding with special materials and structures.We propose and demonstrate supercontinuum generation using long-periodgrating(LPG)waveguides on silicon with a C-band pump.The LPG waveguide is introduced for quasi-phase matching,and the generated supercontinuum spectrum is improved greatly with grating-induced dispersive waves.In addition,the demonstrated LPG waveguide shows a low propagation loss comparable with regular silicon photonic waveguides without gratings.In experiments,when using a 1550-nm 75-fs pulse pump with a pulse energy of 200 pJ,the supercontinuum spectrum generated with the present LPG waveguide shows an ultrabroad extent from 1150 to 2300 nm,which is much wider by 200 nm than that achieved by dispersionengineered uniform silicon photonic waveguides on the same chip.This provides a promising option for on-chip broadband light source for silicon photonic systems. 展开更多
关键词 silicon photonics supercontinuum generation nonlinear optics waveguide grating.
在线阅读 下载PDF
Phase controlled single photon transport in giant atoms coupling to one-dimensional waveguide
13
作者 Yan-Yan Song Yao Zang +3 位作者 Yunning Lu Zhao Liu Xiao-San Ma Mu-Tian Cheng 《Chinese Physics B》 2025年第12期293-300,共8页
The phase-controlled single-photon transport properties of a giant atom coupled to a one-dimensional waveguide are investigated.The coupling between the giant atom and the waveguide is modeled as a multi-point interac... The phase-controlled single-photon transport properties of a giant atom coupled to a one-dimensional waveguide are investigated.The coupling between the giant atom and the waveguide is modeled as a multi-point interaction.The coupling strengths between the giant atom and the waveguide are represented as complex numbers with associated phases.Analytical expressions for the scattering amplitudes are obtained using the real-space Hamiltonian method.The results show that the characteristics of the scattering spectra,including the positions of peaks(or dips)and the full width at half maximum,can be tuned by adjusting the phase difference between the coupling strengths.Further calculations reveal that the scattering spectra can be either super-broadened or sub-broadened.The conditions for achieving perfect nonreciprocal single-photon transport in the Markovian regime are also discussed.Moreover,we demonstrate the control of single-photon transport through phase differences in the non-Markovian regime.Our results may find applications in the design of quantum devices operating at the single-photon level,based on waveguide quantum electrodynamics. 展开更多
关键词 giant atom waveguide nonreciprocal single photon scattering
原文传递
General analytical solutions for one-dimensional diffusion of degradable organic contaminant in the multi-layered media containing geomembranes
14
作者 JIANG Wen-hao GE Shang-qi LI Jiang-shan 《Journal of Central South University》 2025年第10期3895-3910,共16页
In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still... In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions. 展开更多
关键词 general analytical solutions degradable organic contaminant diffusion behavior multi-layered media containing geomembranes composite barrier system
在线阅读 下载PDF
Compact planar-waveguide integrated diffractive optical neural network chip
15
作者 Jianan Feng Chang Li +7 位作者 Dahai Yang Yang Liu Jianyang Hu Chen Chen Yiqun Wang Jie Lin Lei Wang Peng Jin 《Advanced Photonics Nexus》 2025年第1期93-104,共12页
Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unste... Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unsteady.In this study,we propose a planar-waveguide integrated diffractive neural network chip architecture.The three diffractive layers are engraved on the same side of a quartz wafer.The three-layer chip is designed with 32-mm3 processing space and enables a computing speed of 3.1×109 Tera operations per second.The results show that the proposed chip achieves 73.4%experimental accuracy for the Modified National Institute of Standards and Technology database while showing the system’s robustness in a cycle test.The consistency of experiments is 88.6%,and the arithmetic mean standard deviation of the results is~4.7%.The proposed chip architecture can potentially revolutionize high-resolution optical processing tasks with high robustness. 展开更多
关键词 optical computing diffractive neural network planar waveguide high robustness.
在线阅读 下载PDF
Acoustic emission behavior generated from active waveguide during shearing process
16
作者 Yang Chen Hongyong Yuan +4 位作者 Lizheng Deng Rui Pan Jianguo Chen Lida Huang Mingzhi Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6571-6585,共15页
Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by acti... Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by active waveguide facilitates monitoring the development of shear surface and provides a foundation for quantifying landslide movement.Backfill particles are the dominant AE sources in active waveguides,typically chosen from materials such as gravels or sands.However,the influence of particle sizes and gradings has not been clarified in existing laboratory models or field monitoring.This research introduces a direct shear test for active waveguide,where spherical glass beads are employed to precisely regulate the size and grading of backfill particles.A programmable logic controller maintains a constant shearing speed and equivalent total deformation.Through a comprehensive analysis of AE,deformation,and mechanical measurements,this study evaluates the impact of particle size and grading on monitoring capabilities.The findings suggest that the AE mechanism in glass beads is attributed to particle collision and dislocation,leading to AE events characterized by low amplitude and energy levels.The percentage of high-amplitude AE events rises steadily with the progression of shearing.The correlation between shear force,cumulative ring down count(RDC)of AE,and deformation conforms to a power function,with the exponent relying on particle size,grading,and shearing speed.Notably,the combination of small particles and low shearing speeds can yield the maximum cumulative RDC,while selecting particles with uneven grading will significantly enhance the intensity of AE signals from active waveguide. 展开更多
关键词 Landslide monitoring Active waveguide Acoustic emission Direct shear test Particle property
在线阅读 下载PDF
An improved model for predicting thermal contact resistance at multi-layered rock interface
17
作者 WEN Min-jie XIE Jia-hao +4 位作者 LI Li-chen TIAN Yi EL NAGGAR M.Hesham MEI Guo-xiong WU Wen-bing 《Journal of Central South University》 2025年第1期229-243,共15页
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi... This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient. 展开更多
关键词 multi-layered structures general thermal contact model thermal contact resistance GL thermoelastic theory Laplace transform
在线阅读 下载PDF
Sensing characteristics of feedback waveguide slot grating microring resonators
18
作者 ZHU Yanjie LIANG Longxue LIU Chunjuan 《Journal of Measurement Science and Instrumentation》 2025年第2期272-279,共8页
To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,u... To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential. 展开更多
关键词 integrated optics micro-ring resonator slot micro-ring GRATING refractive index sensor silicon waveguide
在线阅读 下载PDF
High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip
19
作者 Jinli Han Mengqi Li +7 位作者 Rongbo Wu Jianping Yu Lang Gao Zhiwei Fang Min Wang Youting Liang Haisu Zhang Ya Cheng 《Opto-Electronic Science》 2025年第9期1-10,共10页
Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithiu... Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability. 展开更多
关键词 integrated photonics thin-film lithium niobate erbium doped waveguide amplifier
在线阅读 下载PDF
Routing cost-integrated intelligent handover strategy for multi-layer LEO mega-constellation networks
20
作者 Zhenglong YIN Quan CHEN +2 位作者 Lei YANG Yong ZHAO Xiaoqian CHEN 《Chinese Journal of Aeronautics》 2025年第6期487-500,共14页
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ... Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies. 展开更多
关键词 multi-layer LEO mega-constellation networks HANDOVER Routing cost Dueling Double Deep Q Network(D3QN)
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部