期刊文献+
共找到43,872篇文章
< 1 2 250 >
每页显示 20 50 100
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:5
1
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Workshop Structure Design of Frozen Drinks Factory
2
作者 Peng WAN Zhen ZHAO +4 位作者 Guoyan WEN Yunshuang FU Xiaoli WU Cuizhi LI Zhiyong LU 《Asian Agricultural Research》 2025年第2期38-40,44,共4页
According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is diffic... According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is difficult to improve.For example,a recent spot check showed that 42 kinds of frozen drinks had microbial indicators exceeding the standard.Part of the reason is that the design of the production workshop is not conducive to the rapid removal of production water,resulting in continuous moisture throughout the workshop,which provides a breeding bed for microorganisms to breed and then contaminates the product.Therefore,research is carried out from the design point of view to fundamentally reduce the moisture in the workshop and build a dry workshop for frozen drinks production,so as to effectively reduce the risk of microbial contamination of frozen drinks. 展开更多
关键词 Frozen drinks MICROORGANISMS structural design
在线阅读 下载PDF
Regulation on Morphology and Electronic Structure Design of Vanadium-Based Sodium Phosphate Cathodes for High-Performance Sodium-Ion Batteries
3
作者 Xinran Qi Baoxiu Hou +11 位作者 Ruifang Zhang Xiaocui Chen Zhenrong Fu Xin Zhou Haiyan Liu Ningzhao Shang Shuaihua Zhang Longgang Wang Chunsheng Li Jianjun Song Shuangqiang Chen Xiaoxian Zhao 《Carbon Energy》 2025年第9期66-97,共32页
Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available... Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available cathode materials,vanadium-based sodium phosphate cathodes are particularly notable for their high operating voltage,excellent thermal stability,and superior cycling performance.However,these materials face significant challenges,including sluggish reaction kinetics,the toxicity of vanadium,and poor electronic conductivity.To overcome these limitations and enhance electrochemical performance,various strategies have been explored.These include morphology regulation via diverse synthesis routes and electronic structure optimization through metal doping,which effectively improve the diffusion of Na+and electrons in vanadium-based phosphate cathodes.This review provides a comprehensive overview of the challenges associated with V-based polyanion cathodes and examines the role of morphology and electronic structure design in enhancing performance.Key vanadium-based phosphate frameworks,such as orthophosphates(Na_(3)V_(2)(PO_(4))_(3)),pyrophosphates(NaVP_(2)O_(7),Na_(2)(VO)P_(2)O_(7),Na_(7)V_(3)(P_(2)O_(7))_(4)),and mixed phosphates(Na_(7)V_(4)(P_(2)O_(7))_(4)PO_(4)),are discussed in detail,highlighting recent advances and insights into their structure-property relationships.The design of cathode material morphology offers an effective approach to optimizing material structures,compositions,porosity,and ion/electron diffusion pathways.Simultaneously,electronic structure tuning through element doping allows for the regulation of band structures,electron distribution,diffusion barriers,and the intrinsic conductivity of phosphate compounds.Addressing the challenges associated with vanadium-based sodium phosphate cathode materials,this study proposes feasible solutions and outlines future research directions toward advancement of high-performance vanadium-based polyanion cathodes. 展开更多
关键词 cathode element doping sodium-ion batteries structural design vanadium-based phosphate
在线阅读 下载PDF
Design and optimization of origami-inspired inflatable deployable tubular structures
4
作者 Bo QIN Shengnan LYU +1 位作者 Shiwei LIU Xilun DING 《Chinese Journal of Aeronautics》 2025年第3期645-661,共17页
Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic ... Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures. 展开更多
关键词 Rigid origamil Inflatable deployable structure Variable volume Multistable configuration Parametric optimization design
原文传递
Additive manufacturing-by-design for support structures:a critical review
5
作者 Jinlong Su Yang Mo +3 位作者 Peijie Shangguan Chinnapat Panwisawas Fulin Jiang Swee Leong Sing 《International Journal of Extreme Manufacturing》 2025年第5期52-80,共29页
Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in ... Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in heat dissipation,and reduces the risk of thermal warping,residual stress,and distortion,particularly in the fabrication of complex geometries that challenge traditional manufacturing methods.Despite the importance of support structures in AM,a systematic review covering all aspects of the design,optimisation,and removal of support structures remains lacking.This review provides an overview of various support structure types—contact and non-contact,as well as identical and dissimilar material configurations—and outlines optimisation methods,including geometric,topology,simulation-driven,data-driven,and multi-objective approaches.Additionally,the mechanisms of support removal,such as mechanical milling and chemical dissolution,and innovations like dissolvable supports and sensitised interfaces,are discussed.Future research directions are outlined,emphasising artificial intelligence(AI)-driven intelligent design,multi-material supports,sustainable support materials,support-free AM techniques,and innovative support removal methods,all of which are essential for advancing AM technology.Overall,this review aims to serve as a foundational reference for the design and optimisation of the support structure in AM. 展开更多
关键词 additive manufacturing support structure design and optimisation SIMULATION SUSTAINABILITY 3D printing
在线阅读 下载PDF
Concurrent Design on Three-Legged Jacket Structure and Transition Piece of Offshore Wind Turbine by Exploiting Topology Optimization
6
作者 Yiming Zhou Jinhua Zhang +5 位作者 Kai Long Ayesha Saed Yutang Chen Rongrong Geng Tao Tao Xiaohui Guo 《Computer Modeling in Engineering & Sciences》 2025年第5期1743-1761,共19页
The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine(OWT)connected to the steel tower,which determines the overall structural dynamic performance of the e... The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine(OWT)connected to the steel tower,which determines the overall structural dynamic performance of the entire OWT.Ideally,optimal performance can be realized by effectively coordinating two components,notwithstanding their separate design processes.In pursuit of this objective,this paper proposes a concurrent design methodology for the jacket structure and transition piece by exploiting topology optimization(TO).The TO for a three-legged jacket foundation is formulated by minimizing static compliance.In contrast to conventional TO,two separated volume fractions are imposed upon the structural design domain of the jacket structure and transition piece to ensure continuity.A 5 MW(megawatt)OWT supported by a four-legged or three-legged jacket substructure is under investigation.The external loads are derived from various design load cases that are acquired using the commercial software platform DNV Bladed(Det Norske Veritas).Through a comparative analysis of the fundamental frequency and maximum nodal deformation,it was found that the optimized solution demonstrates a reduced weight and superior stiffness.The findings demonstrate the present concurrent design approach using TO can yield significant benefits by reducing the overall design cycle and enhancing the feasibility of the final design. 展开更多
关键词 Offshore wind turbine topology optimization jacket structure transition piece design load case
在线阅读 下载PDF
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
7
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization NSGA-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
Synergistic enhancement of strength and plasticity in CoCrFeNiMn high-entropy alloys by novel core−shell microstructure design
8
作者 Chong-yang LIU Xiao-song JIANG +2 位作者 Hong-liang SUN Zi-xuan WU Liu YANG 《Transactions of Nonferrous Metals Society of China》 2025年第10期3428-3442,共15页
The novel core−shell SiC@CoCrFeNiMn high-entropy alloy(HEA)matrix composites(SiC@HEA)were successfully prepared via mechanical ball milling and vacuum hot-pressing sintering(VHPS).After sintering,the microstructure wa... The novel core−shell SiC@CoCrFeNiMn high-entropy alloy(HEA)matrix composites(SiC@HEA)were successfully prepared via mechanical ball milling and vacuum hot-pressing sintering(VHPS).After sintering,the microstructure was composed of FCC solid solution,Cr_(23)C_(6) carbide phases,and Mn_(2)SiO_(4) oxy-silicon phase.The relative density,hardness,tensile strength,and elongation of SiC@HEA composites with 1.0 wt.%SiC were 98.5%,HV 358.0,712.3 MPa,and 36.2%,respectively.The core−shell structure had a significant deflecting effect on the cracks.This effect allowed the composites to effectively maintain the excellent plasticity of the matrix.As a result,the core−shell SiC@HEA composites obtained superior strength and plasticity with multiple mechanisms. 展开更多
关键词 high-entropy alloy SiC nanoparticles microstructure design core−shell structure tensile properties strength and plasticity synergy
在线阅读 下载PDF
AL5E:A breakthrough in broad-spectrum coronavirus inactivation through structure-guided design
9
作者 Heng Gao Jiwei Zhang +1 位作者 Peng Zhan Xinyong Liu 《Chinese Chemical Letters》 2025年第7期1-3,共3页
Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV... Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and SARS-CoV-2.These viruses have caused widespread infections and fatalities,with profound impacts on global economies,social life,and public health systems.Due to their broad host range in natural settings and the consequent high potential for zoonotic spillover events,a thorough investigation of the common viral mechanisms and the identification of druggable targets for pan-coronavirus antiviral development are of utmost importance. 展开更多
关键词 severe acute respiratory syndrome coronavirus single stranded positive sense RNA middle east respiratory syndrome coronavirus SARS CoV CORONAVIRUS structure guided design severe acute respiratory syndrome coronavirus sars cov middle broad spectrum inactivation
原文传递
Study on Structural Design of Composite Building with Multi-layer Steel Structure Module and Steel Frame
10
作者 LIU Shuai 《外文科技期刊数据库(文摘版)工程技术》 2021年第1期659-663,共5页
With the continuous improvement of China's science and technology, the design method of steel structure is also more and more, how to better apply the module building design method to the related buildings, is the... With the continuous improvement of China's science and technology, the design method of steel structure is also more and more, how to better apply the module building design method to the related buildings, is the current issue to focus on consideration. Therefore, this paper will focus on the design method of multi-layer steel structure module and steel frame composite building structure, and analyze and study its structure, so as to improve the utilization rate of steel structure and promote the development of the construction industry. 展开更多
关键词 multi-layer steel structure module steel frame composite design steel structure
原文传递
Highly Thermally Conductiveand Flame-Retardant Waterborne Polyurethane Composites with 3D BNNS Bridging Structures via MagneticField Assistance 被引量:1
11
作者 Hao Jiang Yuhui Xie +7 位作者 Mukun He Jindao Li Feng Wu Hua Guo Yongqiang Guo Delong Xie Yi Mei Junwei Gu 《Nano-Micro Letters》 2025年第6期279-296,共18页
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in ... The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields. 展开更多
关键词 Boron nitride nanosheets Magnetic response structural design Thermal conductivity Flame retardancy
在线阅读 下载PDF
Influence of heat treatment on microstructure of a newβ-solidifyingγ-TiAl alloy 被引量:1
12
作者 Li Quan Xiao-bing Li +5 位作者 Peng Xue Jun-jie Hao Kun Qian Bo Chen Jian-zhong Li Kui Liu 《Journal of Iron and Steel Research International》 2025年第1期239-248,共10页
The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as w... The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as well as the full-lamellar structure.The low-cost Ti-42.5Al-2Mn-0.4Mo-0.1B-0.1C(at.%)alloy was designed,which undergoes bothβandαsingle-phase region during the solidification.It is found that the full-lamellar structure can be obtained by the solution heat treatment at 1230℃ for 20 min and then aging treatment at 800℃ for 3 h.Interestingly,a new microstructure,namely,the pearlitic-like microstructure(PM)induced by theα_(2)/γ→βo+γcellular reaction was observed when the aging temperature is increased to above 800℃.The volume fraction of the PM is gradually increased from 0%to 25.5%,65%,and 94%according to elevated aging temperature from 800 to 900,1000,and 1050℃,respectively.The mechanism of the reducedα_(2)/γlamellae and PM formation was discussed regarding the heterogeneous distribution ofβstabilizing elements and the interface energy stored inα_(2)/γlamellae. 展开更多
关键词 β-γ-TiAl Alloy design Two-step heat treatment Full-lamellar structure Cellular reaction
原文传递
Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural 被引量:1
13
作者 Jing Lei Huijie Zhang +4 位作者 Jian Yang Jia Ran Jiqiang Ning Haiyan Wang Yong Hu 《Journal of Energy Chemistry》 2025年第1期792-814,共23页
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ... Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA. 展开更多
关键词 Electrochemical oxidation of 5- HYDROXYMETHYLFURFURAL 2 5-Furan dicarboxylic acid structural design MECHANISM ELECTROCATALYSTS
在线阅读 下载PDF
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
14
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers Molecular structure design strategies
在线阅读 下载PDF
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
15
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
暂未订购
Web Layout Design of Large Cavity Structures Based on Topology Optimization 被引量:1
16
作者 Xiaoqiao Yang Jialiang Sun Dongping Jin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2665-2689,共25页
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas... Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures. 展开更多
关键词 Topology optimization lightweight design web layout design cavity structure
在线阅读 下载PDF
Influence Mechanism of Liquid Level on Oil Tank Structures and Damage Risk Prevention Based on Shell Theory
17
作者 Si-Kai Wang Ti-Cai Wang +3 位作者 Di-Fei Yi Jia Rui Peng-Fei Cao Hua-Ping Wang 《Structural Durability & Health Monitoring》 2025年第6期1411-1432,共22页
As a key storage facility, the structural safety of large oil tanks is directly related to the stable operation of the energy system. The static pressure caused by the change of liquid level is one of the main loads i... As a key storage facility, the structural safety of large oil tanks is directly related to the stable operation of the energy system. The static pressure caused by the change of liquid level is one of the main loads in the service process of storage tanks, which determines the structural deformation and damage risk. To explore the structural deformation properties under the change of liquid levels and provide a theoretical basis for the prevention and control of damage risk, this paper systematically analyzes the mechanical response of storage tanks under the pressures induced by different liquid levels based on the shell theory. Combined with the finite element software COMSOL, the radial displacement and stress-strain distribution under different liquid levels are simulated to verify the accuracy and effectiveness of the proposed theoretical model. The increase in liquid level and radius aggravates the radial deformation and makes the risk point move up, while the increase in wall thickness can effectively reduce the deformation response. Suggestions on the monitoring zone and damage risk prevention measures have also been given to instruct the safe operation of oil tanks. The research provides theoretical support for the optimization design of storage tank structures, the construction of advanced structural health monitoring system and the prevention and control of damage risk. 展开更多
关键词 Tank structure shell theory deformation characteristics damage prevention measure structural optimization design
在线阅读 下载PDF
Structural Design and Performance Evaluation of a Novel Reduction Robot for Long-Bone Fractures
18
作者 Yadong Zhu Mingjie Dong +4 位作者 Qinglong Lun Wei-Hsin Liao Shiping Zuo Jingxin Zhao Jianfeng Li 《Chinese Journal of Mechanical Engineering》 2025年第4期181-203,共23页
Long-bone fractures are common complaints in orthopedic surgery.In recent years,significant progress has been made in robot-assisted fracture-reduction techniques.As a key medical device for diverse fracture morpholog... Long-bone fractures are common complaints in orthopedic surgery.In recent years,significant progress has been made in robot-assisted fracture-reduction techniques.As a key medical device for diverse fracture morphologies and sites,the design of the reduction robot has a profound impact on the reduction outcomes.However,existing reduction robots have practical limitations and cannot simultaneously satisfy clinical requirements in terms of workspace,force/torque,and structural stiffness.To overcome these problems,we first analyze the potential placement areas and performance requirements of reduction robots according to clinical application scenarios.Subsequently,a 3UPS/S-3P hybrid configuration with decoupled rotational and translational degrees of freedom(DOFs)is proposed,and a kinematic model is derived to achieve the motion characteristics of the remote center of motion(RCM).Furthermore,the structural design of a hybrid reduction robot with an integrated distal clamp and proximal fixator was completed,and a mechanical prototype was constructed.The results of the performance evaluations and static analysis demonstrate that the proposed reduction robot has acceptable workspace,force,and torque performance and excellent structural stiffness.Two clinical case simulations further demonstrated the clinical feasibility of the robot.Finally,preliminary experiments on bone models demonstrated the potential effectiveness of the proposed reduction robot in lower-limb fracture reduction. 展开更多
关键词 Long-bone fracture reduction Hybrid reduction robot Configuration design Kinematic model structural design Performance evaluation
在线阅读 下载PDF
3D printed organohydrogel-based strain sensors with enhanced sensitivity and stability via structural design
19
作者 Binbin Guo Chengyu Lin +8 位作者 Haitao Ye Yu Xue Jiewen Mo Jiawei Chen Yangfeng Cui Chenglong Fu Jiaming Bai Qi Ge Hui Ying Yang 《International Journal of Extreme Manufacturing》 2025年第5期464-479,共16页
Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have ... Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces. 展开更多
关键词 3D printing organohydrogel sensitivity STABILITY structural design
在线阅读 下载PDF
Mechanics of Flexible Lithium-Ion Batteries: Structural Design and Characterization
20
作者 Ziniu Liu Xinran Li Yinhua Bao 《Acta Mechanica Solida Sinica》 2025年第3期369-383,共15页
The development of wearable electronics necessitates flexible and robust energy storage components to enhance comfort and battery longevity.The key to flexible batteries is improving electrochemical stability during d... The development of wearable electronics necessitates flexible and robust energy storage components to enhance comfort and battery longevity.The key to flexible batteries is improving electrochemical stability during deformation,which demands mechanical analysis for optimized design and manufacturing.This paper summarizes the progress of flexible batteries from a mechanical perspective,highlighting highly deformable structures such as fiber,wave,origami,and rigid-supple integrated designs.We discuss mechanical performance characterization and existing evaluation criteria for battery flexibility,along with simulation modeling and testing methods.Furthermore,we analyze mechano-electrochemical coupling,reviewing theoretical models that simulate mechanical and electrochemical behavior under various loads and introduce coupling tests that assess electrochemical performance during deformation.Finally,we suggest future research directions to advance flexible energy storage devices. 展开更多
关键词 Lithium-ion batteries FLEXIBLE structural design Mechanical characterization
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部