期刊文献+
共找到523篇文章
< 1 2 27 >
每页显示 20 50 100
混合ABC-Stacking机器学习的钻孔数据地层三维隐式建模方法
1
作者 邓怡徽 邹艳红 李延申 《成都理工大学学报(自然科学版)》 北大核心 2025年第5期1020-1034,共15页
地层三维模型能够直观、准确地反映场地地下空间地质结构特征,对于地下空间的开发利用具有重要意义。然而,有限的钻孔地质勘探数据使得构建精细地层三维模型困难。本文提出了一种基于钻孔数据的混合堆叠(Stacking)机器学习策略,在少量... 地层三维模型能够直观、准确地反映场地地下空间地质结构特征,对于地下空间的开发利用具有重要意义。然而,有限的钻孔地质勘探数据使得构建精细地层三维模型困难。本文提出了一种基于钻孔数据的混合堆叠(Stacking)机器学习策略,在少量钻孔数据基础上构建虚拟钻孔网络数据集,开展地层三维隐式建模。首先采用人工蜂群算法(artificial bee colony algorithm,ABC)从常见的几种机器学习算法中构建优化的Stacking集成学习模型,学习已有钻孔数据的地层分类分布特征,构建虚拟钻孔的地层分类数据集;然后基于径向基隐函数建模方法构建地层三维模型;最后引入地质剖面重合度定量指标进行模型评价分析。实例结果显示,Stacking集成学习模型在测试集上的F1分数和准确率分别达到88%和89%。相比单一机器学习模型,.混合ABC-Stacking机器学习模型在地层分类预测中具有更高的分类准确性,表明此方法能够有效提高局部地层分类的精细程度。构建的地层三维模型剖面与实际勘探剖面图地层重合度平均达78.38%,进一步证实了此方法的有效性,为地下结构三维精细建模提供思路。 展开更多
关键词 地层三维建模 stacking集成策略 隐式建模 机器学习 人工蜂群算法
在线阅读 下载PDF
双层Stacking算法在冲击地压危险性预测中的应用研究
2
作者 孙甜甜 杨蒙蒙 彭思雨 《无线互联科技》 2025年第17期15-18,共4页
传统的冲击地压危险性预测方法易受非稳定弹性冲击影响,导致预测精度降低。为此,文章研究了双层Stacking算法在冲击地压危险性预测中的应用。该方法通过冲击显现模型计算三向应力弹性冲击,划分非稳定危险状态预测分区,结合随机森林和XGB... 传统的冲击地压危险性预测方法易受非稳定弹性冲击影响,导致预测精度降低。为此,文章研究了双层Stacking算法在冲击地压危险性预测中的应用。该方法通过冲击显现模型计算三向应力弹性冲击,划分非稳定危险状态预测分区,结合随机森林和XGBoost算法,在双层Stacking框架下推导危险发生条件。此外,引入注意力机制动态调整模型输出权重并利用莫兰指数估算预测结果的空间自相关性,以提升预测精度。实验结果表明,1#在3.01~3.2 s出现危险性信号,预测与实际一致,精度高,该方法在均方误差(Mean Squared Error, MSE)、平均绝对误差(Mean Absolute Error, MAE)和准确率方面均优于传统方法,预测精度显著提高,能够为冲击地压的预警提供可靠依据。 展开更多
关键词 双层stacking算法 冲击地压 危险性 预测方法 莫兰指数
在线阅读 下载PDF
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:2
3
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 multi-layer regression algorithm fusion stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
原文传递
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
4
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence multi-layer perceptron(MLP) Discrete element method FEM-DEM Machine learning
在线阅读 下载PDF
Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method 被引量:8
5
作者 Zhao Ke Gao Zhenghong +1 位作者 Huang Jiangtao Li Quan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1541-1552,共12页
Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer... Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer hierarchical constraint method is proposed by coupling principal component analysis(PCA) dimensionality reduction and e-constraint method to translate the original high-dimensional problem into a bi-objective problem. This paper selects the main design objectives by conducting PCA to the preliminary solution of original problem with consideration of the priority of design objectives. According to the e-constraint method, the design model is established by treating the two top-ranking design goals as objective and others as variable constraints. A series of bi-objective Pareto curves will be obtained by changing the variable constraints, and the favorable solution can be obtained by analyzing Pareto curve spectrum. This method is applied to the rotor airfoil design and makes great improvement in aerodynamic performance. It is shown that the method is convenient and efficient, beyond which, it facilitates decision-making of the highdimensional multi-objective engineering problem. 展开更多
关键词 multi-layer hierarchical constraint method Multi-objective optimization NSGA II Pareto front Principal component analysis Rotor airfoil
原文传递
Wettability of Silica Sol Modified Multi-layer Graphene
6
作者 LI Yangzhe YU Baisong +4 位作者 ZHU Yening TU Junbo SU Yuqing WEI Juncong WANG Yilong 《China's Refractories》 CAS 2024年第4期38-42,共5页
To expand the application of multi-layer graphene in water-based systems, modified multi-layer graphene was prepared by vacuum impregnation with silica sol and carbon-embedded heat treatment at 300, 500 or 700 ℃ for ... To expand the application of multi-layer graphene in water-based systems, modified multi-layer graphene was prepared by vacuum impregnation with silica sol and carbon-embedded heat treatment at 300, 500 or 700 ℃ for 3 h. The phase composition, microstructure and wettability of the modified multi-layer graphene heat treated at different temperatures were studied. The results show that the water wettability of the modified multi-layer graphene is improved after vacuum impregnation with silica sol and carbon-embedded heat treatment;the optimum heat treatment temperature is 300 ℃, and the modified multi-layer graphene has the water wetting angle of 64.7°. 展开更多
关键词 multi-layer graphene surface modification silica sol vacuum impregnation method wetting angle
在线阅读 下载PDF
基于Stacking集成学习的高校录取分数线预测 被引量:2
7
作者 干霞 魏嘉银 +2 位作者 卢友军 秦信芳 来小孟 《智能计算机与应用》 2024年第3期116-122,共7页
针对如何准确预测高校录取分数线,帮助高考生做出更加准确的志愿填报决策问题,提出一种基于Stacking集成思想的双层模型。该模型采用机器学习算法暴露特征重要性,融合3个单一算法并使用交叉检验法和网格搜索法进行参数优化。通过在贵州... 针对如何准确预测高校录取分数线,帮助高考生做出更加准确的志愿填报决策问题,提出一种基于Stacking集成思想的双层模型。该模型采用机器学习算法暴露特征重要性,融合3个单一算法并使用交叉检验法和网格搜索法进行参数优化。通过在贵州省2018-2022五年高考高校录取数据上进行实验结果表明,该双层融合模型的预测效果优于支持向量回归、决策树、随机森林等单一模型和其他集成模型;预测误差在5分以内的精度超过95%,平均绝对值误差低于2.43;较单一模型中表现最好的梯度提升指标分别提升44%和19%,提升了预测效果,为未来分数线预测提供了新的方向。 展开更多
关键词 集成学习 stacking 交叉检验法 网格搜索法 高考分数线
在线阅读 下载PDF
Prediction of Logistics Demand via Least Square Method and Multi-Layer Perceptron 被引量:1
8
作者 WEI Leqin ZHANG Anguo 《Journal of Donghua University(English Edition)》 EI CAS 2020年第6期526-533,共8页
To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ... To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy. 展开更多
关键词 logistics demand least square method(LSM) multi-layer perceptron(MLP) PREDICTION strategic planning
在线阅读 下载PDF
基于实况资料的Stacking回归模型下游气温预报方法 被引量:1
9
作者 邓世有 潘影 《山地气象学报》 2024年第5期34-40,共7页
【目的】目前大多数气温预报模型是基于数值预报建立的。这种模型存在一个主要问题,即预测精度完全受数值预报精度的影响,导致预报员过度依赖该模型,缺乏对天气实况资料的认知。【方法】该文利用2013-2022年的贵州省自动气象站资料,在... 【目的】目前大多数气温预报模型是基于数值预报建立的。这种模型存在一个主要问题,即预测精度完全受数值预报精度的影响,导致预报员过度依赖该模型,缺乏对天气实况资料的认知。【方法】该文利用2013-2022年的贵州省自动气象站资料,在考虑气温上下游的相关性的基础上,使用夏季气温实况资料得到了安顺市西秀区日最高和最低气温与省内其他台站之间相隔24 h的皮尔逊相关系数。然后,利用机器学习块选择了Stacking回归模型,建立本地未来24 h的气温预报方法。【结果】(1)上下游最高和最低气温相关性均通过了0.005的显著性检验,表明西秀区24 h气温变化主要受到上游毕节、大方、播州、开阳和贵阳等地的影响;(2)该文所建立的Stacking回归模型能够很好地预测24 h最高和最低气温的变化趋势,在使用±2℃的温度检验方法下,准确率分别达到了83.7%和93.47%;(3)最高气温的预测准确率低于最低气温,反映出西秀区最高气温预报的难度较高。【结论】该方法能够有效降低对数值模式的过度依赖,同时在预测本地24 h气温时具有较高的准确率、稳定性和普适性。 展开更多
关键词 相关系数 stacking回归模型 气温 预报方法
在线阅读 下载PDF
Fabrication and Characterization of Au Nanoparticle-aggregated Nanowires by Using Nanomeniscus-induced Colloidal Stacking Method
10
作者 Sangmin An Wonho Jhe 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期27-34,共8页
We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-base... We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-based atomic force microscope in ambient conditions, and the stacking particles form Au nanoparticle-aggregated nanowire while the nozzle retracts from the surface. Their mechanical properties with relatively low elastic modulus are in situ investigated by using the same apparatus. 展开更多
关键词 Au nanoparticle-aggregated nanowire Nanomeniscus-induced colloidal stacking method Atomic force microscope Liquid–solid coexistence phase
在线阅读 下载PDF
Application of response surface method for optimal transfer conditions of multi-layer ceramic capacitor alignment system
11
作者 PARK Su-seong KIM Jae-min +1 位作者 CHUNG Won-jee SHIN O-chul 《Journal of Central South University》 SCIE EI CAS 2011年第3期726-730,共5页
The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment syste... The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system. 展开更多
关键词 multi-layer ceramic capacitor (MLCC) alignment system response surface method (RSM) MiniTAB ADAMS
在线阅读 下载PDF
基于Stacking方法的多策略本体映射 被引量:2
12
作者 夏红科 郑雪峰 胡祥 《计算机应用研究》 CSCD 北大核心 2009年第10期3653-3656,共4页
将概念相似度的计算问题看做分类问题,提出一种基于Stacking方法的多策略本体映射框架;利用Stacking方法组合多种概念相似度算法,进而提出基于Widrow-Hoff理论的元数据分类算法LMSMC。该框架中,第0层分类器使用各种概念相似度算法对源... 将概念相似度的计算问题看做分类问题,提出一种基于Stacking方法的多策略本体映射框架;利用Stacking方法组合多种概念相似度算法,进而提出基于Widrow-Hoff理论的元数据分类算法LMSMC。该框架中,第0层分类器使用各种概念相似度算法对源本体进行分类,第1层分类器使用LMSMC算法对元数据进行分类,从而实现组合多种算法的本体映射。实验表明该方法比单独使用相似度算法在查全率、查准率上均有所提高。 展开更多
关键词 本体映射 stacking方法 概念相似度 分类
在线阅读 下载PDF
基于熵值法改进Stacking的文本情感分析 被引量:3
13
作者 刘甜甜 谷晓燕 陈梦彤 《科学技术与工程》 北大核心 2023年第23期10008-10014,共7页
在情感分析研究中,使用Stacking算法进行情感分析时基学习器的选择是至关重要的。传统的Stacking算法仅仅只是将不同学习器结合起来,没有区分它们之间的不同,同时也不能反映初级学习器的实际预测情况,针对此问题,基于熵值法改进Stackin... 在情感分析研究中,使用Stacking算法进行情感分析时基学习器的选择是至关重要的。传统的Stacking算法仅仅只是将不同学习器结合起来,没有区分它们之间的不同,同时也不能反映初级学习器的实际预测情况,针对此问题,基于熵值法改进Stacking算法进行文本的情感分类。首先,使用熵值法确定单一分类器的性能指标权重,将指标值的权重进行加权求和获得不同模型的综合得分,通过综合得分来选择性能最好的基学习器组合;接着,由于基模型中的各个分类器性能的不同,将基学习器训练后的预测结果赋予不同的权重,输入到次级学习器当中;最后再利用次级学习器进行训练并预测情感倾向。实验结果表明,基于熵值法改进Stacking模型优于传统的Stacking模型,说明基学习器的选择和重要程度对情感分类具有一定帮助,为之后文本情感分析奠定一定的基础。 展开更多
关键词 情感分析 熵值法 基分类器选择 改进stacking
在线阅读 下载PDF
基于改进Stacking集成学习的高强度钢柱屈曲能力预测 被引量:1
14
作者 何智成 韩茳 +1 位作者 宋贤海 张桂勇 《计算力学学报》 CAS CSCD 北大核心 2023年第4期585-593,共9页
由于屈曲强度的形成机制复杂,影响屈曲强度的因素较多,目前对屈曲强度的认识还不全面。近年来,机器学习已初步应用于预测结构屈曲强度等力学性能,然而基于实验测试的样本数据量小容易造成过拟合,导致其预测精度低。本文提出一种基于改进... 由于屈曲强度的形成机制复杂,影响屈曲强度的因素较多,目前对屈曲强度的认识还不全面。近年来,机器学习已初步应用于预测结构屈曲强度等力学性能,然而基于实验测试的样本数据量小容易造成过拟合,导致其预测精度低。本文提出一种基于改进Stacking算法的GSSA(Grid Search-Stacking Algorithm)模型,并对某型号高强度钢柱屈曲强度进行预测,提升了屈曲强度的预测精度。首先,基于标准Stacking算法通过使用网格搜索算法选择最优基模型组合,并采用留一交叉验证(LOOCV)法训练基模型,实现了GSSA模型的构建,有效解决了小样本集训练带来的预测精度低问题;然后,为了进一步验证GSSA模型的可靠性,本文采用Bland-Altman法对GSSA模型进行一致性评价,结果表明,GSSA模型具有很好的可靠性;最后,采用SHAP模型对GSSA模型预测的屈曲强度进行了可解释性分析,实现了其影响因素评价。 展开更多
关键词 屈曲强度 stacking算法 GSSA模型 Bland-Altman法 SHAP模型
在线阅读 下载PDF
基于Stacking法的无人机光谱遥测冬小麦产量 被引量:4
15
作者 李宗鹏 李连豪 +3 位作者 陈震 程千 徐洪刚 庞超凡 《灌溉排水学报》 CSCD 北大核心 2021年第8期50-56,共7页
【目的】精确、高效地预测作物产量。【方法】以冬小麦为研究对象,利用无人机搭载多光谱相机,获取抽穗期、开花期和灌浆期的多光谱图像数据。根据多光谱波段选取对产量敏感的14种植被指数,并优选出与产量极显著相关的13种植被指数;基于... 【目的】精确、高效地预测作物产量。【方法】以冬小麦为研究对象,利用无人机搭载多光谱相机,获取抽穗期、开花期和灌浆期的多光谱图像数据。根据多光谱波段选取对产量敏感的14种植被指数,并优选出与产量极显著相关的13种植被指数;基于优选出的植被指数分别建立各生育期的MLR、PLSR、SVM和Cubist产量估算初级模型进行对比分析,并利用Stacking方法集成初级学习器模型分别建立各个时期MLR和Cubist次级产量估测模型。【结果】随着冬小麦生长阶段的发展,各植被指数与产量的相关性逐渐增大,在灌浆期达到最大值0.67;对比4个初级学习器模型精度,Cubist模型在抽穗期、开花期和灌浆期的估产精度均为最高;利用Stacking方法构建的次级学习器模型以Cubist模型的估产效果最佳,MLR和Cubist模型的估产精度在各个时期均得到了提升。【结论】基于Stacking方法融合估产模型能够显著提升冬小麦的产量估算精度,为今后的估产研究提供参考。 展开更多
关键词 多光谱 植被指数 stacking 模型
在线阅读 下载PDF
基于Stacking模型集成算法的莲都区南方红豆杉潜在分布区 被引量:4
16
作者 陈涵 张超 余树全 《浙江农林大学学报》 CAS CSCD 北大核心 2019年第3期494-500,共7页
研究使用R软件中的CaretEnsemble和Caret程序包,并基于Stacking方法来实现模型集成,研究南方红豆杉Taxus chinensis var.mairei在浙江省丽水市莲都区的潜在分布区,并比较5种单一模型的模拟结果及其与集成模型的差异。结果表明:单一模型... 研究使用R软件中的CaretEnsemble和Caret程序包,并基于Stacking方法来实现模型集成,研究南方红豆杉Taxus chinensis var.mairei在浙江省丽水市莲都区的潜在分布区,并比较5种单一模型的模拟结果及其与集成模型的差异。结果表明:单一模型中极端梯度上升模型表现最好,其次是随机森林模型、支持向量机模型、朴素贝叶斯模型和分类回归树模型,集成模型模拟结果好于单一模型,其Kappa值达0.80,准确率达0.90。集成模型模拟结果显示:影响南方红豆杉分布的主要环境因子为海拔、归一化植被指数和年平均最少降雨量。南方红豆杉主要适宜生长在浙江省丽水市莲都区的山地丘陵地区,中部盆地及平原地区不适宜南方红豆杉的生长,其在莲都区的潜在分布区面积为5.01万hm^2。构建的集成模型在一定程度上提高了模型精度,使预测效果更优。 展开更多
关键词 森林生态学 物种分布模型 集成学习 stacking算法 南方红豆杉 浙江省丽水市莲都区
在线阅读 下载PDF
基于Stacking策略的稳定性分类器组合模型研究 被引量:10
17
作者 吴挡平 张忠林 曹婷婷 《小型微型计算机系统》 CSCD 北大核心 2019年第5期1045-1049,共5页
针对Bagging、AdaBoost等通用的集成算法对于稳定性分类算法集成效果不是很好的问题,提出了基于Stacking策略的稳定性分类器组合算法.该算法通过构造一个两层的叠加式框架结构,融合数据降维技术处理两层分类器的输入特征,对4种稳定性分... 针对Bagging、AdaBoost等通用的集成算法对于稳定性分类算法集成效果不是很好的问题,提出了基于Stacking策略的稳定性分类器组合算法.该算法通过构造一个两层的叠加式框架结构,融合数据降维技术处理两层分类器的输入特征,对4种稳定性分类器(LDA、GLM、SVM、KNN)进行组合学习.利用UCI数据集测试算法的性能.实验结果表明:相比一些集成算法(RF、Bagging、C50、AdaBoost),基于Stacking策略稳定性分类器组合模型可以获得更高的分类准确率.同时也为二分类的分类模型提供了一个可行的参考方法. 展开更多
关键词 stacking方法 稳定性分类器 分类精度 数据降维技术 集成算法
在线阅读 下载PDF
基于Stacking集成机器学习的波浪预报 被引量:6
18
作者 沈晖华 时健 +2 位作者 徐佳丽 朱士鹏 郑金海 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期354-358,共5页
采用多层感知器模型、随机森林模型为第一层子模型,极端树模型为第二层元模型,建立基于Stacking集成机器学习的波浪预报算法,并引入邻域平均法抑制在拐点处产生的数值震荡。以长江口外海2016年1-9月的风速和中国近海波高数据为数据源,... 采用多层感知器模型、随机森林模型为第一层子模型,极端树模型为第二层元模型,建立基于Stacking集成机器学习的波浪预报算法,并引入邻域平均法抑制在拐点处产生的数值震荡。以长江口外海2016年1-9月的风速和中国近海波高数据为数据源,利用机器学习风速与有效波高之间的关系,将2016年10-11月的风速、波高数据用于预报结果的对比分析,预报前45 d R^2拟合优度达到0.97以上,平均误差最大值为0.08 m,平均相对误差最大值为0.05,预报结果与波浪谱模型结果趋势一致,准确度较高;预报结果后15 d误差增长较快,这与训练集数据中寒潮浪占比较少有关。 展开更多
关键词 集成机器学习 stacking算法 波浪预报方法 长江口外海海域 中国近海波浪数据
在线阅读 下载PDF
Seismogram Synthesis in Multi-layered Half-space Part Ⅰ. Theoretical Formulations 被引量:25
19
作者 Chen XiaofeiDepartment of Geophysics, Peking University, Beijing 100871, China 《Earthquake Research in China》 1999年第2期53-78,共26页
In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synth... In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synthesizing theoretical seismograms in multi-layered half-space is an important tool for understanding the structure of the Earth’s interior as well as the seismic source process from well-recorded seismograms data. As part of a review of the state-of-the-art, in this article I shall present a systematic and self-contained theory of elastic waves in multi-layered half-space media based on the developments in the past two decades. 展开更多
关键词 SYNTHETIC seismogram multi-layered HALF-SPACE GENERALIZED reflectiontransmission COEFFICIENTS method
在线阅读 下载PDF
FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling 被引量:2
20
作者 Zhenyi Huang Qi Shi +1 位作者 Fuqiang Chen Yunfeng Shi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第3期416-421,共6页
The influence of temperature on the hydrogen diffusion behavior in X80 pipeline steel during stacking for slow cooling was studied using electrochemical penetration method, the temperature field and the hydrogen diffu... The influence of temperature on the hydrogen diffusion behavior in X80 pipeline steel during stacking for slow cooling was studied using electrochemical penetration method, the temperature field and the hydrogen diffusion in this pipeline steel during stacking for slow cooling were simulated by ABAQUS finite element method (FEM) software. The results show that in this process there is a reciprocal relationship between the natural logarithm of hydrogen diffusion coefficient and temperature. The cooling rate decreases gradually with the increase of steel plate thickness. The hydrogen content is higher at high temperature (500-400 ℃) than that in low temperature region (300-100 ℃). The FEM simulation results are consistent with the experimental ones, and the model can be used to predict the hydrogen diffusion behavior in industrial production of X80 pipeline steel. 展开更多
关键词 X80 pipeline steel stacking Slow cooling Hydrogen diffusion Finite element method (FEM) Electrochemical penetration
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部