期刊文献+
共找到432,012篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation Method of Piezoelectric Guided Wave Propagation in Multi-layer Riveted Structures
1
作者 QIN Zhen CHEN Jian ZHANG Zhichao 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期51-63,共13页
Multi-layer riveted structures are widely applied to aircraft.During the service,cracks may appear within these structures due to stress concentration of the riveted holes.The guided wave monitoring has been proved to... Multi-layer riveted structures are widely applied to aircraft.During the service,cracks may appear within these structures due to stress concentration of the riveted holes.The guided wave monitoring has been proved to be an effective tool to deal with this problem.However,there is a lack of understanding of the wave propagation process across such kinds of structures.This study proposes a piezoelectric guided wave simulation method to reveal the propagation of guided waves in multi-layer riveted structures.Effects of pretension force,friction coefficient,and cracks that might influence wave characteristics are studied.The guided wave simulation data is compared with the experimental results and the results verify the simulation model.Then the guided wave propagation in a more complex long-beam butt joint structure is further simulated. 展开更多
关键词 multi⁃layer riveted structures piezoelectric guided wave simulation guided wave monitoring pretension force
在线阅读 下载PDF
Intelligent Parameter Decision-Making and Multi-objective Prediction for Multi-layer and Multi-pass LDED Process
2
作者 Li Yaguan Nie Zhenguo +2 位作者 Li Huilin Wang Tao Huang Qingxue 《稀有金属材料与工程》 北大核心 2026年第1期47-58,共12页
The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m... The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts. 展开更多
关键词 multi-layer and multi-pass laser cladding Taguchi method grey relational analysis GB-BP network
原文传递
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
3
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Thermal simulation method for researching solidification process of ductile iron pipe based on heat transfer similarity of characteristic unit of ductile iron pipe
4
作者 Gan-chao Zhai Gong-ao Zhu +4 位作者 Shao-dong Hu Bin Yang Jie-yu Zhang Xiang-ru Chen Qi-jie Zhai 《China Foundry》 2026年第1期62-72,共11页
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen... Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe. 展开更多
关键词 ductile iron pipe centrifugal casting thermal simulation MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Bridging the gap:A scoping review of wet and dry lab simulation training in orthopaedic surgical education
5
作者 Sari Wathiq Al Hajaj Chandramohan Ravichandran +4 位作者 Karthic Swaminathan Sanjeevi Bharadwaj Vishnu V Nair Hussein Shoukry Sriram Srinivasan 《World Journal of Orthopedics》 2026年第1期132-139,共8页
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints... BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care. 展开更多
关键词 Orthopaedic education Wet lab Dry lab simulation training Virtual reality Surgical procedure
在线阅读 下载PDF
Typhoon Kompasu(2118)simulation with planetary boundary layer and cloud physics parameterization improvements
6
作者 Xiaowei Tan Zhiqiu Gao Yubin Li 《Atmospheric and Oceanic Science Letters》 2026年第1期41-46,共6页
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred... This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure. 展开更多
关键词 Tropical cyclone Numerical simulation Planetary boundary layer parameterization SCHEME Cloud physics scheme
在线阅读 下载PDF
Automatic gating and riser system design and defect control for K4169 superalloy guide blade casting based on parametric 3D modeling-simulation integrated system
7
作者 Le-chuan Li Ya-jun Yin +4 位作者 Bing-zheng Fan Guo-yan Shui Xiao-yuan Ji Jian-xin Zhou Lei Jin 《China Foundry》 2026年第1期20-30,共11页
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si... Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%. 展开更多
关键词 numerical simulation automatic design investment casting parametric 3D modeling gating and riser system
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
8
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Enabling Intrinsic Antiferroelectricity in Two-dimensional NbOCl_(2):Molecular Dynamics Simulations based on Deep Learning Interatomic Potential
9
作者 Jiawei Mao Yinglu Jia +2 位作者 Gaoyang Gou Shi Liu Xiao Cheng Zeng 《Chinese Physics Letters》 2026年第1期156-178,共23页
Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely orien... Compared to the well-studied two-dimensional(2D)ferroelectricity,the appearance of 2D antiferroelectricity is much rarer,where local dipoles from the nonequivalent sublattices within 2D monolayers are oppositely oriented.Using NbOCl_(2) monolayer with competing ferroelectric(FE)and antiferroelectric(AFE)phases as a 2D material platform,we demonstrate the emergence of intrinsic antiferroelectricity in NbOCl_(2) monolayer under experimentally accessible shear strain,along with new functionality associated with electric field-induced AFE-to-FE phase transition.Specifically,the complex configuration space accommodating FE and AFE phases,polarization switching kinetics,and finite temperature thermodynamic properties of 2D NbOCl_(2) are all accurately predicted by large-scale molecular dynamics simulations based on deep learning interatomic potential model.Moreover,room temperature stable antiferroelectricity with low polarization switching barrier and one-dimensional collinear polarization arrangement is predicted in shear-deformed NbOCl_(2) monolayer.The transition from AFE to FE phase in 2D NbOCl_(2) can be triggered by a low critical electric field,leading to a double polarization–electric(P–E)loop with small hysteresis.A new type of optoelectronic device composed of AFE-NbOCl_(2) is proposed,enabling electric“writing”and nonlinear optical“reading”logical operation with fast operation speed and low power consumption. 展开更多
关键词 d monolayers local dipoles nonequivalent sublattices intrinsic antiferroelectricity two dimensional nbocl d antiferroelectricity experimentally accessible shear strainalong molecular dynamics simulations
原文传递
Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation
10
作者 Momir Sjerić Maja Perčić +1 位作者 Ivana Jovanović Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期259-276,共18页
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st... Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions. 展开更多
关键词 1D/0D simulation Carbon footprint Fishing vessels Life cycle assessment Life cycle cost assessment Liquefied natural gas
在线阅读 下载PDF
Numerical Simulation of Multi-track and Multi-layer Temperature Field on Laser Direct Metal Shaping 被引量:8
11
作者 LONG Risheng~(1,2) LIU Weijun~1 (1.Advanced Manufacture Lab,Shenyang Institute of Automation,Shenyang 110016,China, 2.Graduate School,Chinese Academy of Sciences,Beijing 100039,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1111-1116,共6页
To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS proce... To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS. 展开更多
关键词 LASER DIRECT METAL SHAPING transient temperature field numerical simulation
在线阅读 下载PDF
Simulation of thermal field induced by concave spherical transducer in multi-layer media 被引量:5
12
作者 丁亚军 钱盛友 廖志远 《Journal of Central South University》 SCIE EI CAS 2013年第11期3166-3170,共5页
High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,tempe... High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range. 展开更多
关键词 multi-layer media concave spherical transducer high intensity focused ultrasound thermal field
在线阅读 下载PDF
Numerical simulation analysis on multi-layer low-temperature heating method of asphalt pavement in hot in-place recycling 被引量:4
13
作者 MA Deng-cheng LAN Fen 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3793-3806,共14页
Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating ... Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster. 展开更多
关键词 asphalt pavement hot in-place recycling heating speed heating uniformity multi-layer LOW-TEMPERATURE
在线阅读 下载PDF
Numerical simulation for deformation of multi-layer steel plates under underwater impulsive loading 被引量:3
14
作者 任鹏 张伟 +1 位作者 郭子涛 魏刚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第3期68-72,共5页
To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AU... To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AUTODYN V6.1.In order to verify the validity of numerical methods,the experimental results are compared with the simulation results.The multi-layer plate types include 1 mm + 3 mm,2 mm + 2 mm,3 mm + 1 mm double-layer,and 4 mm monolayer annealed 304 stainless steel plates.Each type of target plates has four flyer plate's velocities.There are 150,200,250 m /s and 300 m /s.The pressure wave histories in water and deformation of specimens have been predicted and measured by numerical simulations.The simulation results demonstrate that the protective capacity of 2mm + 2mm double-layer annealed 304 stainless steel plates is the best one in this velocity range of flyer plate,as the integral deformation is the smallest among the four structure types. 展开更多
关键词 underwater shock wave numerical simulation thin plate structure dynamic response
在线阅读 下载PDF
Blast wave characteristics of multi-layer composite charge:Theoretical analysis,numerical simulation,and experimental validation 被引量:2
15
作者 Jun-bao Li Wei-bing Li +2 位作者 Xiao-wen Hong Jia-xin Yu Jian-jun Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期91-102,共12页
This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the cha... This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the charge,a peak overpressure prediction model for the composite charge under singlepoint detonation and simultaneous detonation was established.The effects of the charge structure and initiation method on the overpressure field characteristics were investigated in AUTODYN simulation.The accuracy of the prediction model and the reliability of the numerical simulation method were subsequently verified in a series of static explosion experiments.The results reveal that the mass of the inner charge was the key factor determining the peak overpressure of the composite charge under single-point detonation.The peak overpressure in the radial direction improved apparently with an increase in the aspect ratio of the charge.The overpressure curves in the axial direction exhibited a multi-peak phenomenon,and the secondary peak overpressure even exceeded the primary peak at distances of 30D and 40D(where D is the charge diameter).The difference in peak overpressure among azimuth angles of 0-90°gradually decreased with an increase in the propagation distance of the shock wave.The coupled effect of the detonation energy of the inner and outer charge under simultaneous detonation improved the overpressure in both radial and axial directions.The difference in peak overpressure obtained from model prediction and experimental measurements was less than 16.4%. 展开更多
关键词 Blast wave characteristics multi-layer composite charge Dimensional analysis AUTODYN mapping Model Explosion experiment
在线阅读 下载PDF
Numerical Simulation of Multi-Layer Penetration Process of Binder Droplet in 3DP Technique 被引量:4
16
作者 Xiangyu Gao Weidong Yang +2 位作者 Hongxuan Xian Xiyuan Tu Yuanyuang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期227-241,共15页
This paper studies the binder droplet injection process in the 3DP technique.The mathematical model of the binder penetration process for multi-nozzle and multi-layer in 3DP technique is established,by using the conse... This paper studies the binder droplet injection process in the 3DP technique.The mathematical model of the binder penetration process for multi-nozzle and multi-layer in 3DP technique is established,by using the conservation Level set method.According to the two-dimensional plane model of three-dimensional spatial structure of sand bed,the construction method of an equivalent cylindrical mapping infiltration model is proposed to represent the porosity of the model in the two-dimensional plane,which is exactly the same as that in the three-dimensional space,as well as closer to the arrangement of the three-dimensional space,and to realize the differentiation between the pores and the throats.The method of spraying droplets alternately by multiple nozzles simulates the staggered arrangement of multiple array-type nozzles and prints the current layer completely at one time.The numerical simulation of multi-layer penetration process is realized by using the method of continuous multi-simulation.The simulation model of the binder penetration process by using multi-nozzle and multi-layer is established to simulate the whole process of the binder from the nozzle to impacting on the sand bed and then to penetrating into the sand bed,which reflects the complete penetration process and predicts the sand agglomeration. 展开更多
关键词 Additive manufacturing binder penetration numerical simulation
在线阅读 下载PDF
Simulation study of multi-layer titanium nitride nanodisk broadband solar absorber and thermal emitter 被引量:1
17
作者 Xi Huang Yingting Yi +6 位作者 Qianju Song Zao Yi Can Ma Chaojun Tang Qingdong Zeng Shubo Cheng Rizwan Raza 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第11期151-160,共10页
Solar energy has always been a kind of energy with large reserves and wide application.It is well utilized through solar absorbers.In our study,the finite difference time domain method(FDTD)is used to simulate the abs... Solar energy has always been a kind of energy with large reserves and wide application.It is well utilized through solar absorbers.In our study,the finite difference time domain method(FDTD)is used to simulate the absorber composed of refractory metal materials,and its absorption performance and thermal emission performance are obtained.The ultra-wide band of 200 nm-3000 nm reaches 95.93%absorption efficiency,of which the bandwidth absorption efficiency of2533 nm(200 nm-2733 nm)is greater than 90%.The absorption efficiency in the whole spectrum range(200 nm-2733 nm)is 97.17%on average.The multilayer nanodisk structure of the absorber allows it to undergo strong surface plasmon resonance and near-field coupling when irradiated by incident light.The thermal emission performance of the absorber enables it to also be applied to the thermal emitter.The thermal emission efficiency of 95.37%can be achieved at a high temperature of up to 1500 K.Moreover,the changes of polarization and incident angle do not cause significant changes in absorption.Under the gradual change of polarization angle(0°-90°),the absorption spectrum maintains a high degree of consistency.As the incident angle increases from 0°to 60°,there is still 85%absorption efficiency.The high absorption efficiency and excellent thermal radiation intensity of ultra-wideband enable it to be deeply used in energy absorption and conversion applications. 展开更多
关键词 surface plasmon resonance multi-layer nanodisk structure ultra-wideband efficient absorption rate high thermal radiation intensity
原文传递
Simulation of Fragment Impact on Multi-Layer Targets Using Contact Method
18
作者 CRAWFORD John E 《Transactions of Tianjin University》 EI CAS 2006年第B09期152-157,共6页
Cased explosives generate highly energetic fragments as their casing breaks up. Due to the complexity of casing fragment related behavior such as embedment, perforation and ricochet, it may be insufficient to use equi... Cased explosives generate highly energetic fragments as their casing breaks up. Due to the complexity of casing fragment related behavior such as embedment, perforation and ricochet, it may be insufficient to use equivalent triangular pressure loading in fragment impact simulations. This simplified method may over- or under-predict the target response. Recently, a procedure using contact techniques has been proposed to overcome such difficulties. It has been shown that the new method has the inherent capability in modeling the multi-piece and multi-hit fragment impact problems in a more realistic way. To investigate the applicability of the proposed method to simulations involving multi-layer penetration, the selected problems of fragment impact on multi-layer targets are described in this paper. It is demonstrated that this method is capable of predicting the complicated multi-layer structural response caused by fragment impact and penetration. Modeling procedures and some technical issues are also discussed. 展开更多
关键词 contact finite element fragment impact multi-layer PENETRATION simulation
在线阅读 下载PDF
Lattice Boltzmann simulation of phase change and heat transfer characteristics in the multi-layer deposition
19
作者 Yanlin REN Zhaomiao LIU +2 位作者 Yan PANG Xiang WANG Yuandi XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第4期553-566,共14页
The metal droplets deposition method(MDDM)is a rapid prototyping technology,implemented via metallurgy bonding within droplets.The anisotropy of heat transfer and re-melting is caused by an asymmetric deposition proce... The metal droplets deposition method(MDDM)is a rapid prototyping technology,implemented via metallurgy bonding within droplets.The anisotropy of heat transfer and re-melting is caused by an asymmetric deposition process.A lattice Boltzmann method(LBM)model is established to predict the heat transfer and phase change in the multi-layer deposition.The prediction model is verified by the experimental temperature profiles in existing literature.The monitoring points are set to compare the temperature profiles,and decoupling analyze the heat transfer mechanism in different positions.The negative relationships between the re-molten volume of the temperature difference,as well as the influence of the dispositive position and the relative position of the adjacent component are observed and analyzed under the heat conduction.This work is helpful to choose the appropriate temperature conditions and the optimal dispositive method. 展开更多
关键词 multi-layer deposition phase change heat transfer lattice Boltzmann method(LBM)
在线阅读 下载PDF
GRAPHICS PROCESSING UNIT CLUSTER ACCELERATED MONTE CARLO SIMULATION OF PHOTON TRANSPORT IN MULTI-LAYERED TISSUES
20
作者 CHAO JIANG HENG HE +1 位作者 PENGCHENG LI QINGMING LUO 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2012年第2期1-9,共9页
We present a graphics processing unit(GPU)cluster-based Monte Carlo simulation of photon transport in multi-layered tissues.The cluster is composed of multiple computing nodes in a local area network where each node i... We present a graphics processing unit(GPU)cluster-based Monte Carlo simulation of photon transport in multi-layered tissues.The cluster is composed of multiple computing nodes in a local area network where each node is a personal computer equipped with one or several GPU(s)for parallel computing.In this study,the MPI(Message Passing Interface),the OpenMP(Open Multi-Processing)and the CUDA(Compute Unified Device Architecture)technologies are employed to develop the program.It is demonstrated that this designing runs roughly N times faster than that using single GPU when the GPUs within the cluster are of the same type,where N is the total number of the GPUs within the cluster. 展开更多
关键词 Photon transport in tissues Monte Carlo simulation GPU cluster
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部