Probabilistic linguistic term sets(PLTSs)are an effective tool for expressing subjective human cognition that offer advantages in the field ofmulti-attribute decision-making(MADM).However,studies have found that PLTSs...Probabilistic linguistic term sets(PLTSs)are an effective tool for expressing subjective human cognition that offer advantages in the field ofmulti-attribute decision-making(MADM).However,studies have found that PLTSs have lost their ability to accurately capture the views of decision-makers(DMs)in certain circumstances,such as when the DM hesitates between multiple linguistic terms or the decision information is incomplete,thus affecting their role in the decision-making process.Belief function theory is a leading streamof thought in uncertainty processing that is suitable for dealing with the limitations of PLTS.Therefore,the purpose of this study is to extend PLTS to incorporate belief function theory.First,we provide the basic concepts of the extended PLTS(i.e.,belief-based PLTS)through case analyses.Second,the aggregation operator of belief-based PLTS is defined with the ordered weighted average(OWA)-based soft likelihood function,which is improved by considering the reliability of the information source.Third,to measure the magnitude of different belief-based PLTSs,the belief interval of singleton is calculated,and the comparison method of belief-based PLTS is constructed based on probabilities.On the basis of the preceding discussion,we further develop an emergency decision framework that includes several novel techniques,such as attribute weight determination and decision information aggregation.Finally,the usefulness of the framework is demonstrated through a case study,and its effectiveness is illustrated through a series of comparisons.展开更多
In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the...In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.展开更多
For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many ...For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.展开更多
By using the partial ordering method,a more general type,of Ekeland’s ariational principle and a set-valued Caristi’s coincidence theorem in probabilistic metric spaces are obtained.In addition,a direct simple proof...By using the partial ordering method,a more general type,of Ekeland’s ariational principle and a set-valued Caristi’s coincidence theorem in probabilistic metric spaces are obtained.In addition,a direct simple proof of the equivalence between these two theorems in probabilistic metric spaces is given.展开更多
Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp...Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.展开更多
As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment...As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.展开更多
In this paper, a simplified definition of boundedness of the sets in probabilistic normed linear space was introduced. By means of the probabilistic norm of linear operators, the linear operator theory on probabilisti...In this paper, a simplified definition of boundedness of the sets in probabilistic normed linear space was introduced. By means of the probabilistic norm of linear operators, the linear operator theory on probabilistic normed linear space was further studied. On probabilistic normed linear operator space, some resonance theorems dealing with probabilistic bounded sets, probabilistic semi_bounded sets, and probabilistic non_unbounded sets are obtained.展开更多
As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making proble...As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.展开更多
The article is a comprehensive review of two major approaches to rough set theory:the classic rough set model introduced by Pawlak and the probabilistic approaches.The classic model is presented as a staging ground to...The article is a comprehensive review of two major approaches to rough set theory:the classic rough set model introduced by Pawlak and the probabilistic approaches.The classic model is presented as a staging ground to the discussion of two varieties of the probabilistic approach,i.e.of the variable precision and Bayesian rough set models.Both of these models extend the classic model to deal with stochastic interactions while preserving the basic ideas of the original rough set theory,such as set approximations,data dependencies,reducts etc.The probabilistic models are able to handle weaker data interactions than the classic model,thus extending the applicability of the rough set paradigm.The extended models are presented in considerable detail with some illustrative examples.展开更多
Graduate education is the main way to train high-level innovative talents,the basic layout to cope with the global talent competition,and the important cornerstone for implementing the innovation-driven development st...Graduate education is the main way to train high-level innovative talents,the basic layout to cope with the global talent competition,and the important cornerstone for implementing the innovation-driven development strategy and building an innovation-driven country.Therefore,graduate education is of great remarkably to the development of national education.As an important manifestation of graduate education,the quality of a graduate thesis should receive more attention.It is conducive to promoting the quality of graduates by supervising and examining the quality of the graduate thesis.For this purpose,this work is based on textmining,expert interviews,and questionnaire surveys to obtain the factors influencing the quality of a graduate thesis first.Then,through three rounds of expert consultation,a multidimensional evaluation indicator system for the graduate thesis quality is built.Furthermore,probabilistic linguistic termsets(PLTSs)are utilized to obtain the initial evaluation information and apply the stepwise weight assessment ratio analysis method to determine the weights of attributes.In the ensuing step,the novel multi-attribute border approximation area comparison based on the PLTS method is established.Finally,the proposed method is employed in a case study concerning the quality evaluation of a graduate thesis and the effectiveness of this approach is further illustrated.展开更多
This research proposes multicriteria decision-making(MCDM)-based real-time Mesenchymal stem cells(MSC)transfusion framework.The testing phase of the methodology denotes the ability to stick to plastic surfaces,the upr...This research proposes multicriteria decision-making(MCDM)-based real-time Mesenchymal stem cells(MSC)transfusion framework.The testing phase of the methodology denotes the ability to stick to plastic surfaces,the upregulation and downregulation of certain surface protein markers,and lastly,the ability to differentiate into various cell types.First,two scenarios of an enhanced dataset based on a medical perspective were created in the development phase to produce varying levels of emergency.Second,for real-timemonitoring ofCOVID-19 patients with different emergency levels(i.e.,mild,moderate,severe,and critical),an automated triage algorithmbased on a formal medical guideline is proposed,taking into account the improvement and deterioration procedures fromone level to the next.For this strategy,Einstein aggregation information under the Pythagorean probabilistic hesitant fuzzy environment(PyPHFE)is developed.Einstein operations on PyPHFE such as Einstein sum,product,scalar multiplication,and their properties are investigated.Then,several Pythagorean probabilistic hesitant fuzzy Einstein aggregation operators,namely the Pythagorean probabilistic hesitant fuzzy weighted average(PyPHFWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein weighted geometric(PyPHFEWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted average(PyPHFEOWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted geometric(PyPHFEOWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein hybrid average(PyPHFEHA)operator and Pythagorean probabilistic hesitant fuzzy Einstein hybrid geometric(PyPHFEHG)operator are investigated.All the above-mentioned operators are helpful in design the algorithm to tackle uncertainty in decision making problems.In last,a numerical case study of decision making is presented to demonstrate the applicability and validity of the proposed technique.Besides,the comparison of the existing and the proposed technique is established to show the effectiveness and validity of the established technique.展开更多
Industrial control systems(ICSs)are widely used in various fields,and the information security problems of ICSs are increasingly serious.The existing evaluation methods fail to describe the uncertain evaluation inform...Industrial control systems(ICSs)are widely used in various fields,and the information security problems of ICSs are increasingly serious.The existing evaluation methods fail to describe the uncertain evaluation information and group evaluation information of experts.Thus,this paper introduces the probabilistic linguistic term sets(PLTSs)to model the evaluation information of experts.Meanwhile,we propose a probabilistic linguistic multi-criteria decision-making(PL-MCDM)method to solve the information security assessment problem of ICSs.Firstly,we propose a novel subscript equivalence distance measure of PLTSs to improve the existing methods.Secondly,we use the Best Worst Method(BWM)method and Criteria Importance Through Inter-criteria Correlation(CRITIC)method to obtain the subjective weights and objective weights,which are used to derive the combined weights.Thirdly,we use the subscript equivalence distance measure method and the combined weight method to improve the probabilistic linguistic Visekriterijumska Optimizacija I Kompromisno Resenje(PL-VIKOR)method.Finally,we apply the proposed method to solve the information security assessment problem of ICSs.When comparing with the existing methods such as the probabilistic linguistic Tomada deDecisão Iterativa Multicritério(PL-TODIM)method and probabilistic linguistic Technique for Order Preference by Similarity to Ideal Solution(PL-TOPSIS)method,the case example shows that the proposed method can provide more reasonable ranking results.By evaluating and ranking the information security level of different ICSs,managers can identify problems in time and guide their work better.展开更多
In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is p...In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.展开更多
A co-location pattern is a set of spatial features whose instances frequently appear in a spatial neighborhood. This paper efficiently mines the top-k probabilistic prevalent co-locations over spatially uncertain data...A co-location pattern is a set of spatial features whose instances frequently appear in a spatial neighborhood. This paper efficiently mines the top-k probabilistic prevalent co-locations over spatially uncertain data sets and makes the following contributions: 1) the concept of the top-k prob- abilistic prevalent co-locations based on a possible world model is defined; 2) a framework for discovering the top- k probabilistic prevalent co-locations is set up; 3) a matrix method is proposed to improve the computation of the preva- lence probability of a top-k candidate, and two pruning rules of the matrix block are given to accelerate the search for ex- act solutions; 4) a polynomial matrix is developed to further speed up the top-k candidate refinement process; 5) an ap- proximate algorithm with compensation factor is introduced so that relatively large quantity of data can be processed quickly. The efficiency of our proposed algorithms as well as the accuracy of the approximation algorithms is evaluated with an extensive set of experiments using both synthetic and real uncertain data sets.展开更多
Determining the correct threshold values for the probabilistic rough set approaches has been a heated issue among the community.Existing techniques offer no way in guaranteeing that the calculated values optimize the ...Determining the correct threshold values for the probabilistic rough set approaches has been a heated issue among the community.Existing techniques offer no way in guaranteeing that the calculated values optimize the classification ability of the decision rules derived from this configuration.This article will formulate a game theoretic approach to calculating these thresholds to ensure correct approximation region size.Using payoff tables created from approximation measures and modified conditional risk strategies,we provide the user with tolerance levels for their loss functions.Using the tolerance values,new thresholds are calculated to provide correct classification regions.This will aid in determining a set of optimal region threshold values for decision making.展开更多
Probabilistic reliability model established by insufficient data is inaccessible. The convex model was applied to model the uncertainties of variables. A new non-probabilistic reliability model was proposed based on t...Probabilistic reliability model established by insufficient data is inaccessible. The convex model was applied to model the uncertainties of variables. A new non-probabilistic reliability model was proposed based on the robustness of system to uncertainty. The non-probabilistic reliability model,the infinite norm model,and the probabilistic model were used to assess the reliability of a steel beam,respectively. The results show that the resistance is allowed to couple with the action effect in the non-probabilistic reliability model. Additionally,the non-probabilistic reliability model becomes the same accurate as probabilistic model with the increase of the bounded uncertain information. The model is decided by the available data and information.展开更多
基金supported by National Social Science Foundation of China (Grant No.17ZDA030).
文摘Probabilistic linguistic term sets(PLTSs)are an effective tool for expressing subjective human cognition that offer advantages in the field ofmulti-attribute decision-making(MADM).However,studies have found that PLTSs have lost their ability to accurately capture the views of decision-makers(DMs)in certain circumstances,such as when the DM hesitates between multiple linguistic terms or the decision information is incomplete,thus affecting their role in the decision-making process.Belief function theory is a leading streamof thought in uncertainty processing that is suitable for dealing with the limitations of PLTS.Therefore,the purpose of this study is to extend PLTS to incorporate belief function theory.First,we provide the basic concepts of the extended PLTS(i.e.,belief-based PLTS)through case analyses.Second,the aggregation operator of belief-based PLTS is defined with the ordered weighted average(OWA)-based soft likelihood function,which is improved by considering the reliability of the information source.Third,to measure the magnitude of different belief-based PLTSs,the belief interval of singleton is calculated,and the comparison method of belief-based PLTS is constructed based on probabilities.On the basis of the preceding discussion,we further develop an emergency decision framework that includes several novel techniques,such as attribute weight determination and decision information aggregation.Finally,the usefulness of the framework is demonstrated through a case study,and its effectiveness is illustrated through a series of comparisons.
基金supported by the National Natural Science Foundation in China(Yue Qi,Project No.71861015).
文摘In previous research on two-sided matching(TSM)decision,agents’preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets.Nowdays,the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality.Probability hesitant fuzzy sets,however,have grown in popularity due to their advantages in communicating complex information.Therefore,this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information.The agent attribute weight vector should be obtained by using the maximum deviation method and Hamming distance.The probabilistic hesitancy fuzzy information matrix of each agent is then arranged to determine the comprehensive evaluation of two matching agent sets.The agent satisfaction degree is calculated using the technique for order preference by similarity to ideal solution(TOPSIS).Additionally,the multi-object programming technique is used to establish a TSM method with the objective of maximizing the agent satisfaction of two-sided agents,and the matching schemes are then established by solving the built model.The study concludes by providing a real-world supply-demand scenario to illustrate the effectiveness of the proposed method.The proposed method is more flexible than prior research since it expresses evaluation information using probability hesitating fuzzy sets and can be used in scenarios when attribute weight information is unclear.
文摘For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.
文摘By using the partial ordering method,a more general type,of Ekeland’s ariational principle and a set-valued Caristi’s coincidence theorem in probabilistic metric spaces are obtained.In addition,a direct simple proof of the equivalence between these two theorems in probabilistic metric spaces is given.
文摘Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.
基金"Development of the Map of General Seismic Zoning in the Territory of the Republic of Kazakhstan" (state registration 0113RK01142)"Development of the map of Seismic Microzoning of the Territory of Almaty City"(state registration 0115RK02701)funded within the state funding
文摘As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.
文摘In this paper, a simplified definition of boundedness of the sets in probabilistic normed linear space was introduced. By means of the probabilistic norm of linear operators, the linear operator theory on probabilistic normed linear space was further studied. On probabilistic normed linear operator space, some resonance theorems dealing with probabilistic bounded sets, probabilistic semi_bounded sets, and probabilistic non_unbounded sets are obtained.
基金supported by the Key Research and Development Project of Hunan Province(2019SK2331)the Natural Science Foundation of Hunan Province(2019JJ40099,2019JJ40100,2020JJ4339)+2 种基金the Key Scientific Research Project of Hunan Education Department(18A317,19A202)the Scientific Research Fund of Hunan Provincial Education Department(20B272)the Innovation Foundation for Postgraduate of Hunan Institute of Science and Technology(YCX2020A34).
文摘As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.
文摘The article is a comprehensive review of two major approaches to rough set theory:the classic rough set model introduced by Pawlak and the probabilistic approaches.The classic model is presented as a staging ground to the discussion of two varieties of the probabilistic approach,i.e.of the variable precision and Bayesian rough set models.Both of these models extend the classic model to deal with stochastic interactions while preserving the basic ideas of the original rough set theory,such as set approximations,data dependencies,reducts etc.The probabilistic models are able to handle weaker data interactions than the classic model,thus extending the applicability of the rough set paradigm.The extended models are presented in considerable detail with some illustrative examples.
文摘Graduate education is the main way to train high-level innovative talents,the basic layout to cope with the global talent competition,and the important cornerstone for implementing the innovation-driven development strategy and building an innovation-driven country.Therefore,graduate education is of great remarkably to the development of national education.As an important manifestation of graduate education,the quality of a graduate thesis should receive more attention.It is conducive to promoting the quality of graduates by supervising and examining the quality of the graduate thesis.For this purpose,this work is based on textmining,expert interviews,and questionnaire surveys to obtain the factors influencing the quality of a graduate thesis first.Then,through three rounds of expert consultation,a multidimensional evaluation indicator system for the graduate thesis quality is built.Furthermore,probabilistic linguistic termsets(PLTSs)are utilized to obtain the initial evaluation information and apply the stepwise weight assessment ratio analysis method to determine the weights of attributes.In the ensuing step,the novel multi-attribute border approximation area comparison based on the PLTS method is established.Finally,the proposed method is employed in a case study concerning the quality evaluation of a graduate thesis and the effectiveness of this approach is further illustrated.
基金the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4310396DSR32。
文摘This research proposes multicriteria decision-making(MCDM)-based real-time Mesenchymal stem cells(MSC)transfusion framework.The testing phase of the methodology denotes the ability to stick to plastic surfaces,the upregulation and downregulation of certain surface protein markers,and lastly,the ability to differentiate into various cell types.First,two scenarios of an enhanced dataset based on a medical perspective were created in the development phase to produce varying levels of emergency.Second,for real-timemonitoring ofCOVID-19 patients with different emergency levels(i.e.,mild,moderate,severe,and critical),an automated triage algorithmbased on a formal medical guideline is proposed,taking into account the improvement and deterioration procedures fromone level to the next.For this strategy,Einstein aggregation information under the Pythagorean probabilistic hesitant fuzzy environment(PyPHFE)is developed.Einstein operations on PyPHFE such as Einstein sum,product,scalar multiplication,and their properties are investigated.Then,several Pythagorean probabilistic hesitant fuzzy Einstein aggregation operators,namely the Pythagorean probabilistic hesitant fuzzy weighted average(PyPHFWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein weighted geometric(PyPHFEWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted average(PyPHFEOWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted geometric(PyPHFEOWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein hybrid average(PyPHFEHA)operator and Pythagorean probabilistic hesitant fuzzy Einstein hybrid geometric(PyPHFEHG)operator are investigated.All the above-mentioned operators are helpful in design the algorithm to tackle uncertainty in decision making problems.In last,a numerical case study of decision making is presented to demonstrate the applicability and validity of the proposed technique.Besides,the comparison of the existing and the proposed technique is established to show the effectiveness and validity of the established technique.
文摘Industrial control systems(ICSs)are widely used in various fields,and the information security problems of ICSs are increasingly serious.The existing evaluation methods fail to describe the uncertain evaluation information and group evaluation information of experts.Thus,this paper introduces the probabilistic linguistic term sets(PLTSs)to model the evaluation information of experts.Meanwhile,we propose a probabilistic linguistic multi-criteria decision-making(PL-MCDM)method to solve the information security assessment problem of ICSs.Firstly,we propose a novel subscript equivalence distance measure of PLTSs to improve the existing methods.Secondly,we use the Best Worst Method(BWM)method and Criteria Importance Through Inter-criteria Correlation(CRITIC)method to obtain the subjective weights and objective weights,which are used to derive the combined weights.Thirdly,we use the subscript equivalence distance measure method and the combined weight method to improve the probabilistic linguistic Visekriterijumska Optimizacija I Kompromisno Resenje(PL-VIKOR)method.Finally,we apply the proposed method to solve the information security assessment problem of ICSs.When comparing with the existing methods such as the probabilistic linguistic Tomada deDecisão Iterativa Multicritério(PL-TODIM)method and probabilistic linguistic Technique for Order Preference by Similarity to Ideal Solution(PL-TOPSIS)method,the case example shows that the proposed method can provide more reasonable ranking results.By evaluating and ranking the information security level of different ICSs,managers can identify problems in time and guide their work better.
基金supported by the National Natural Science Foundation of China(71901214).
文摘In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.
文摘A co-location pattern is a set of spatial features whose instances frequently appear in a spatial neighborhood. This paper efficiently mines the top-k probabilistic prevalent co-locations over spatially uncertain data sets and makes the following contributions: 1) the concept of the top-k prob- abilistic prevalent co-locations based on a possible world model is defined; 2) a framework for discovering the top- k probabilistic prevalent co-locations is set up; 3) a matrix method is proposed to improve the computation of the preva- lence probability of a top-k candidate, and two pruning rules of the matrix block are given to accelerate the search for ex- act solutions; 4) a polynomial matrix is developed to further speed up the top-k candidate refinement process; 5) an ap- proximate algorithm with compensation factor is introduced so that relatively large quantity of data can be processed quickly. The efficiency of our proposed algorithms as well as the accuracy of the approximation algorithms is evaluated with an extensive set of experiments using both synthetic and real uncertain data sets.
文摘Determining the correct threshold values for the probabilistic rough set approaches has been a heated issue among the community.Existing techniques offer no way in guaranteeing that the calculated values optimize the classification ability of the decision rules derived from this configuration.This article will formulate a game theoretic approach to calculating these thresholds to ensure correct approximation region size.Using payoff tables created from approximation measures and modified conditional risk strategies,we provide the user with tolerance levels for their loss functions.Using the tolerance values,new thresholds are calculated to provide correct classification regions.This will aid in determining a set of optimal region threshold values for decision making.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008100)the Ministry of Science and Technology(Grant No.2011CB013604)+2 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2001EEQ028)the Science and Technology Planning Project of Weihai(Grant No.2010-3-96)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.201009)
文摘Probabilistic reliability model established by insufficient data is inaccessible. The convex model was applied to model the uncertainties of variables. A new non-probabilistic reliability model was proposed based on the robustness of system to uncertainty. The non-probabilistic reliability model,the infinite norm model,and the probabilistic model were used to assess the reliability of a steel beam,respectively. The results show that the resistance is allowed to couple with the action effect in the non-probabilistic reliability model. Additionally,the non-probabilistic reliability model becomes the same accurate as probabilistic model with the increase of the bounded uncertain information. The model is decided by the available data and information.