Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure throug...Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure through self-priming. However, their pressure frequency and cavitation characteristics remain unclear, resulting in an inability to fully utilize resonance and cavitation erosion to break coal and rock. In this study, high-frequency pressure testing, high-speed photography, and large eddy simulation(LES) are used to investigate the distribution of the pressure frequency band, evolution law of the cavitation cloud, and its regulation mechanism of a continuous waterjet, SOPW, and AFESOPW. The results indicated that the excitation of the plunger pump, shearing layer vortex, and bubble collapse corresponded to the three high-amplitude frequency bands of the waterjet pressure. AFESOPWs have an additional self-priming frequency that can produce a larger amplitude under a synergistic effect with the second high-amplitude frequency band. A better cavitation effect was produced after self-priming the annulus fluid, and the shedding frequency of the cavitation clouds of the three types of waterjets was linearly related to the cavitation number. The peak pressure of the waterjet and cavitation erosion effect can be improved by modulating the waterjet pressure oscillation frequency and cavitation shedding frequency.展开更多
This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for d...This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.展开更多
The advancement of imaging resolution has made the impact of multi-frequency composite jitter in satellite platforms on non-collinear time delay and integration(TDI)charge-coupled device(CCD)imaging systems increasing...The advancement of imaging resolution has made the impact of multi-frequency composite jitter in satellite platforms on non-collinear time delay and integration(TDI)charge-coupled device(CCD)imaging systems increasingly critical.Moreover,the accuracy of jitter detection is constrained by the limited inter-chip overlap region inherent to non-collinear TDI CCDs.To address these challenges,a multi-frequency jitter detection method is proposed,achieving sub-pixel level error extraction.Furthermore,a multi-frequency jitter fitting approach utilizing a scale-adjustable sliding window is introduced.For composite multi-frequency jitter,spectral analysis decomposes the relative jitter error curve,while the scale-adjustable sliding window enables frequency-division fitting and modeling.Validation experiments using Gaofen-8(GF-8)remote sensing satellite imagery detected jitter at 0.65,20,and 100 Hz in the cross-track direction and at 0.5,100,and 120 Hz in the along-track direction,demonstrating the method’s precision in detecting platform jitter at sub-pixel accuracy(<0.2 pixels)and its efficacy in fitting and modeling for non-collinear TDI CCD imaging systems subject to multi-frequency jitter.展开更多
The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location re...The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence.展开更多
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery...BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.展开更多
In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,...In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems.展开更多
This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in...This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSE The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.展开更多
For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented ...This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral(PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω,respectively.The experimental results,with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system,validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.展开更多
Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning m...Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning method to exploit these trajectories related to air traffic control(ATC)actions.However,the quality of position data and the tiny density difference between traffic flows in the terminal area make it particularly challenging.To alleviate these two challenges,this paper proposes a novel framework which combines robust deep auto-encoder(RDAE)model and density peak(DP)clustering algorithm.Specifically,the RDAE model is utilized to reconstruct denoising trajectory and identify anomaly trajectories in the terminal area by two different regularizations.Then,the nonlinear components captured by the encoder of RDAE are input in the DP algorithm to classify the global traffic flows.An experiment on a terminal airspace at Guangzhou Baiyun Airport(ZGGG)with anomaly label shows that the proposed combination can automatically capture non-conventional spatiotemporal traffic patterns in the aircraft movement.The superiority of RDAE and combination are also demonstrated by visualizing and quantitatively evaluating the experimental results.展开更多
GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free...GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.展开更多
Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristic...Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied.Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity,multi-characteristic and multi-type nonlinear collapse,strata collapse activa- tion turned worse,presenting an accumulation effect of multi-frequency mining for the strata damage.With the example of multi-frequency mining in the mine,the real characte- ristics of strata collapse by multi-frequency mining and nonlinear characteristics of accu- mulative response damage were analyzed.Research achievements about the surface re- cover and controlling of strata collapse by the multi-frequency mining have instruction meaning.展开更多
The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map...The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.展开更多
Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. T...Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.展开更多
The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important ...The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.展开更多
Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The...Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The concept of LDR is studied and applied for damage imaging of delamination in composite laminates. Aiming at the problem of poor anti-noise ability and inaccurate damage identification in traditional detection process,an LDR-based multi-frequency method is proposed. Experimental results show that the proposed method can realize the localization and imaging of delamination damage in composite materials.展开更多
Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner...Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.展开更多
This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ...This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.展开更多
We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory...We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory entropies are studied in two typical potentials, i.e., harmonic potential and double-well potential, and in viscous environment by interacting trajectory method. The results of the trajectory methods are in agreement well with the numerical methods(Monte Carlo simulation and difference equation). The single-trajectory entropies increasing(decreasing) could be caused by absorption(emission) heat from(to) the thermal environment. Also, some interesting trajectories, which correspond to the rare evens in the processes, are demonstrated.展开更多
An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncou...An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncoupled rolling pendulum.The resonance frequency of each the rolling pendulum can be automatically tuned by adjusting its geometric parameters to access parametric resonance.This harvester can be used to harvest the energy at low frequency.A prototype is developed and evaluated.Its mathematical model is derived.A cam with rolling follower mechanism is employed to generate multi-frequency excitation.An experimental study is conducted to validate the proposed concept.The experimental results are confirmed by the numerical results.The harvester is successfully tuned when the angular velocity of the cam is changed from 1.149 to 1.236 Hz.展开更多
基金supported by the program for National Natural Science Foundation of China (Nos. 52174173, 52274188, and 52104190)the Joint Funds of the National Natural Science Foundation of China (No. U24A2091)+1 种基金The Natural Science Foundation of Henan Polytechnic University (No. B2021-2)Double FirstClass Initiative of Safety and Energy Engineering (Henan Polytechnic University) (Nos. AQ20240703 and AQ20230304)。
文摘Under submerged conditions, compared with traditional self-excited oscillating pulsed waterjets(SOPWs), annular fluid-enhanced self-excited oscillating pulsed waterjets(AFESOPWs) exhibit a higher surge pressure through self-priming. However, their pressure frequency and cavitation characteristics remain unclear, resulting in an inability to fully utilize resonance and cavitation erosion to break coal and rock. In this study, high-frequency pressure testing, high-speed photography, and large eddy simulation(LES) are used to investigate the distribution of the pressure frequency band, evolution law of the cavitation cloud, and its regulation mechanism of a continuous waterjet, SOPW, and AFESOPW. The results indicated that the excitation of the plunger pump, shearing layer vortex, and bubble collapse corresponded to the three high-amplitude frequency bands of the waterjet pressure. AFESOPWs have an additional self-priming frequency that can produce a larger amplitude under a synergistic effect with the second high-amplitude frequency band. A better cavitation effect was produced after self-priming the annulus fluid, and the shedding frequency of the cavitation clouds of the three types of waterjets was linearly related to the cavitation number. The peak pressure of the waterjet and cavitation erosion effect can be improved by modulating the waterjet pressure oscillation frequency and cavitation shedding frequency.
基金supported in part by the National Natural Science Foundation of China(Grant No.12432001)Natural Science Foundation of Hunan Province(Grant Nos.2023JJ60527,2023JJ30152,and 2023JJ30259)the Natural Science Foundation of Changsha(KQ2202133).
文摘This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.
文摘The advancement of imaging resolution has made the impact of multi-frequency composite jitter in satellite platforms on non-collinear time delay and integration(TDI)charge-coupled device(CCD)imaging systems increasingly critical.Moreover,the accuracy of jitter detection is constrained by the limited inter-chip overlap region inherent to non-collinear TDI CCDs.To address these challenges,a multi-frequency jitter detection method is proposed,achieving sub-pixel level error extraction.Furthermore,a multi-frequency jitter fitting approach utilizing a scale-adjustable sliding window is introduced.For composite multi-frequency jitter,spectral analysis decomposes the relative jitter error curve,while the scale-adjustable sliding window enables frequency-division fitting and modeling.Validation experiments using Gaofen-8(GF-8)remote sensing satellite imagery detected jitter at 0.65,20,and 100 Hz in the cross-track direction and at 0.5,100,and 120 Hz in the along-track direction,demonstrating the method’s precision in detecting platform jitter at sub-pixel accuracy(<0.2 pixels)and its efficacy in fitting and modeling for non-collinear TDI CCD imaging systems subject to multi-frequency jitter.
基金supported by the Natural Science Foundation of Fujian Province of China(2025J01380)National Natural Science Foundation of China(No.62471139)+3 种基金the Major Health Research Project of Fujian Province(2021ZD01001)Fujian Provincial Units Special Funds for Education and Research(2022639)Fujian University of Technology Research Start-up Fund(GY-S24002)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(GY-H-24179).
文摘The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence.
基金Supported by the Scientific Research Projects of the Health System in Pingshan District,No.2023122.
文摘BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.
文摘In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSE The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(No.50907057)the National High-Tech Research and Development Program (863) of China(No.2007AA05Z419)
文摘This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral(PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω,respectively.The experimental results,with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system,validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.
基金the Foundation of Graduate Innovation Center in NUAA(kfjj20190707).
文摘Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning method to exploit these trajectories related to air traffic control(ATC)actions.However,the quality of position data and the tiny density difference between traffic flows in the terminal area make it particularly challenging.To alleviate these two challenges,this paper proposes a novel framework which combines robust deep auto-encoder(RDAE)model and density peak(DP)clustering algorithm.Specifically,the RDAE model is utilized to reconstruct denoising trajectory and identify anomaly trajectories in the terminal area by two different regularizations.Then,the nonlinear components captured by the encoder of RDAE are input in the DP algorithm to classify the global traffic flows.An experiment on a terminal airspace at Guangzhou Baiyun Airport(ZGGG)with anomaly label shows that the proposed combination can automatically capture non-conventional spatiotemporal traffic patterns in the aircraft movement.The superiority of RDAE and combination are also demonstrated by visualizing and quantitatively evaluating the experimental results.
基金Supported by the Key Laboratory of Geological Hazards on Three Gorges Reservoir Area,Ministry of Education, China(No.2006KDZ05).
文摘GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.
基金the National Natural Science Foundation of China(50604009)Open Research Project of State Key Laboratory of Coal Resources & Safe Mining(CUMTB)(2007-09)+3 种基金Liaoning Technical University Science Research Foundation(04A01009)Natural Science Research Foundation of Liaoning Province(20022158202183392)Liaoning Technical University Open Research Foundation Program of the Geomantics & Application Provincial Level Key Laboratory(2004014)
文摘Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied.Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity,multi-characteristic and multi-type nonlinear collapse,strata collapse activa- tion turned worse,presenting an accumulation effect of multi-frequency mining for the strata damage.With the example of multi-frequency mining in the mine,the real characte- ristics of strata collapse by multi-frequency mining and nonlinear characteristics of accu- mulative response damage were analyzed.Research achievements about the surface re- cover and controlling of strata collapse by the multi-frequency mining have instruction meaning.
文摘The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.
文摘Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674074)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1228)
文摘The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.
基金supported by the National Natural Science Foundation of China(Nos.51875227,51805261,51775267)the Natural Science Foundation of Jiangsu Province(Nos.BK20181286,BK20180430)the Aviation Science Fund(No.20161552014)
文摘Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The concept of LDR is studied and applied for damage imaging of delamination in composite laminates. Aiming at the problem of poor anti-noise ability and inaccurate damage identification in traditional detection process,an LDR-based multi-frequency method is proposed. Experimental results show that the proposed method can realize the localization and imaging of delamination damage in composite materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41204120 and 41304130)the Fundamental Research Funds for the Central Universities(Grant No.2042014kf0251)
文摘Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.
基金supported by the National Natural Science Foundation of China(62071335,61931015,61831009)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.
基金supported by the National Natural Science Foundation of China (Grant No. 12234013)the Natural Science Foundation of Shandong Province (Grant No. ZR2021LLZ009)。
文摘We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory entropies are studied in two typical potentials, i.e., harmonic potential and double-well potential, and in viscous environment by interacting trajectory method. The results of the trajectory methods are in agreement well with the numerical methods(Monte Carlo simulation and difference equation). The single-trajectory entropies increasing(decreasing) could be caused by absorption(emission) heat from(to) the thermal environment. Also, some interesting trajectories, which correspond to the rare evens in the processes, are demonstrated.
文摘An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncoupled rolling pendulum.The resonance frequency of each the rolling pendulum can be automatically tuned by adjusting its geometric parameters to access parametric resonance.This harvester can be used to harvest the energy at low frequency.A prototype is developed and evaluated.Its mathematical model is derived.A cam with rolling follower mechanism is employed to generate multi-frequency excitation.An experimental study is conducted to validate the proposed concept.The experimental results are confirmed by the numerical results.The harvester is successfully tuned when the angular velocity of the cam is changed from 1.149 to 1.236 Hz.