期刊文献+
共找到235篇文章
< 1 2 12 >
每页显示 20 50 100
Using LSA and text segmentation to improve automatic Chinese dialogue text summarization 被引量:3
1
作者 LIU Chuan-han WANG Yong-cheng +1 位作者 ZHENG Fei LIU De-rong 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第1期79-87,共9页
Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all questio... Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all question paragraphs are identified, an automatic text segmentation approach analogous to Text'filing is exploited to improve the precision of correlating question paragraphs and answer paragraphs, and finally some "important" sentences are extracted from the generic content and the question-answer pairs to generate a complete summary. Experimental results showed that our approach is highly efficient and improves significantly the coherence of the summary while not compromising informativeness. 展开更多
关键词 automatic text summarization Latent semantic analysis (LSA) Text segmentation Dialogue style COHERENCE Question-answer pairs
在线阅读 下载PDF
Study on controllability of semantic accessibility scale from the internet-based system of automatic text summarization and evaluation 被引量:2
2
作者 DU Jia-li YU Ping-fang +1 位作者 ZHAO Hong-yan XU Jing 《通讯和计算机(中英文版)》 2008年第9期54-60,共7页
关键词 通信技术 计算机技术 控制方法 自动化系统
在线阅读 下载PDF
Insertion of Ontological Knowledge to Improve Automatic Summarization Extraction Methods
3
作者 Jésus Antonio Motta Laurence Capus Nicole Tourigny 《Journal of Intelligent Learning Systems and Applications》 2011年第3期131-138,共8页
The vast availability of information sources has created a need for research on automatic summarization. Current methods perform either by extraction or abstraction. The extraction methods are interesting, because the... The vast availability of information sources has created a need for research on automatic summarization. Current methods perform either by extraction or abstraction. The extraction methods are interesting, because they are robust and independent of the language used. An extractive summary is obtained by selecting sentences of the original source based on information content. This selection can be automated using a classification function induced by a machine learning algorithm. This function classifies sentences into two groups: important or non-important. The important sentences then form the summary. But, the efficiency of this function directly depends on the used training set to induce it. This paper proposes an original way of optimizing this training set by inserting lexemes obtained from ontological knowledge bases. The training set optimized is reinforced by ontological knowledge. An experiment with four machine learning algorithms was made to validate this proposition. The improvement achieved is clearly significant for each of these algorithms. 展开更多
关键词 automatic summarization ONTOLOGY MACHINE Learning Extraction Method
暂未订购
Using AdaBoost Meta-Learning Algorithm for Medical News Multi-Document Summarization 被引量:1
4
作者 Mahdi Gholami Mehr 《Intelligent Information Management》 2013年第6期182-190,共9页
Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss abo... Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss about multi-document summarization that differs from the single one in which the issues of compression, speed, redundancy and passage selection are critical in the formation of useful summaries. Since the number and variety of online medical news make them difficult for experts in the medical field to read all of the medical news, an automatic multi-document summarization can be useful for easy study of information on the web. Hence we propose a new approach based on machine learning meta-learner algorithm called AdaBoost that is used for summarization. We treat a document as a set of sentences, and the learning algorithm must learn to classify as positive or negative examples of sentences based on the score of the sentences. For this learning task, we apply AdaBoost meta-learning algorithm where a C4.5 decision tree has been chosen as the base learner. In our experiment, we use 450 pieces of news that are downloaded from different medical websites. Then we compare our results with some existing approaches. 展开更多
关键词 multi-docuMENT summarization Machine Learning Decision Trees ADABOOST C4.5 MEDICAL Document summarization
在线阅读 下载PDF
Constructing a taxonomy to support multi-document summarization of dissertation abstracts
5
作者 KHOO Christopher S.G. GOH Dion H. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第11期1258-1267,共10页
This paper reports part of a study to develop a method for automatic multi-document summarization. The current focus is on dissertation abstracts in the field of sociology. The summarization method uses macro-level an... This paper reports part of a study to develop a method for automatic multi-document summarization. The current focus is on dissertation abstracts in the field of sociology. The summarization method uses macro-level and micro-level discourse structure to identify important information that can be extracted from dissertation abstracts, and then uses a variable-based framework to integrate and organize extracted information across dissertation abstracts. This framework focuses more on research concepts and their research relationships found in sociology dissertation abstracts and has a hierarchical structure. A taxonomy is constructed to support the summarization process in two ways: (1) helping to identify important concepts and relations expressed in the text, and (2) providing a structure for linking similar concepts in different abstracts. This paper describes the variable-based framework and the summarization process, and then reports the construction of the taxonomy for supporting the summarization process. An example is provided to show how to use the constructed taxonomy to identify important concepts and integrate the concepts extracted from different abstracts. 展开更多
关键词 Text summarization automatic multi-document summarization Variable-based framework Digital library
在线阅读 下载PDF
Density peaks clustering based integrate framework for multi-document summarization 被引量:2
6
作者 BaoyanWang Jian Zhang +1 位作者 Yi Liu Yuexian Zou 《CAAI Transactions on Intelligence Technology》 2017年第1期26-30,共5页
We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based met... We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10]. 展开更多
关键词 multi-document summarization Integrated score framework Density peaks clustering Sentences rank
在线阅读 下载PDF
Research on multi-document summarization based on latent semantic indexing
7
作者 秦兵 刘挺 +1 位作者 张宇 李生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期91-94,共4页
A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decompos... A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decomposition (SVD) to reduce the dimension of the matrix and extract features, and then the sentence similarity is computed. The sentences are clustered according to similarity of sentences. The centroid sentences are selected from each class. Finally, the selected sentences are ordered to generate the summarization. The evaluation and results are presented, which prove that the proposed methods are efficient. 展开更多
关键词 multi-document summarization LSI (latent semantic indexing) CLUSTERING
在线阅读 下载PDF
TWO-STAGE SENTENCE SELECTION APPROACH FOR MULTI-DOCUMENT SUMMARIZATION
8
作者 Zhang Shu Zhao Tiejun Zheng Dequan Zhao Hua 《Journal of Electronics(China)》 2008年第4期562-567,共6页
Compared with the traditional method of adding sentences to get summary in multi-document summarization,a two-stage sentence selection approach based on deleting sentences in acandidate sentence set to generate summar... Compared with the traditional method of adding sentences to get summary in multi-document summarization,a two-stage sentence selection approach based on deleting sentences in acandidate sentence set to generate summary is proposed,which has two stages,the acquisition of acandidate sentence set and the optimum selection of sentence.At the first stage,the candidate sentenceset is obtained by redundancy-based sentence selection approach.At the second stage,optimum se-lection of sentences is proposed to delete sentences in the candidate sentence set according to itscontribution to the whole set until getting the appointed summary length.With a test corpus,theROUGE value of summaries gotten by the proposed approach proves its validity,compared with thetraditional method of sentence selection.The influence of the token chosen in the two-stage sentenceselection approach on the quality of the generated summaries is analyzed. 展开更多
关键词 TWO-STAGE Sentence selection approach multi-document summarization
在线阅读 下载PDF
Multi-Document Summarization Model Based on Integer Linear Programming
9
作者 Rasim Alguliev Ramiz Aliguliyev Makrufa Hajirahimova 《Intelligent Control and Automation》 2010年第2期105-111,共7页
This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main c... This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main content of the text, and summaries are created by extracting the highest scored sentences from the original document. The model formalized as a multiobjective integer programming problem. An advantage of this model is that it can cover the main content of source (s) and provide less redundancy in the generated sum- maries. To extract sentences which form a summary with an extensive coverage of the main content of the text and less redundancy, have been used the similarity of sentences to the original document and the similarity between sentences. Performance evaluation is conducted by comparing summarization outputs with manual summaries of DUC2004 dataset. Experiments showed that the proposed approach outperforms the related methods. 展开更多
关键词 multi-docuMENT summarization Content COVERAGE LESS REDUNDANCY INTEGER Linear Programming
在线阅读 下载PDF
Weakly Supervised Abstractive Summarization with Enhancing Factual Consistency for Chinese Complaint Reports
10
作者 Ren Tao Chen Shuang 《Computers, Materials & Continua》 SCIE EI 2023年第6期6201-6217,共17页
A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore... A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore,in this paper,a simple and weakly supervised framework considering factual consistency is proposed to generate a summary of city-based complaint reports without pre-labeled sentences/words.Furthermore,it considers the importance of entity in complaint reports to ensure factual consistency of summary.Experimental results on the customer review datasets(Yelp and Amazon)and complaint report dataset(complaint reports of Shenyang in China)show that the proposed framework outperforms state-of-the-art approaches in ROUGE scores and human evaluation.It unveils the effectiveness of our approach to helping in dealing with complaint reports. 展开更多
关键词 automatic summarization abstractive summarization weakly supervised training entity recognition
在线阅读 下载PDF
Support Vector Machine Based Handwritten Hindi Character Recognition and Summarization
11
作者 Sunil Dhankhar Mukesh Kumar Gupta +3 位作者 Fida Hussain Memon Surbhi Bhatia Pankaj Dadheech Arwa Mashat 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期397-412,共16页
In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English l... In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English language for handwritten character recognition but very less work on the under-resourced Hindi language.A method is developed for identifying Hindi language characters that use morphology,edge detection,histograms of oriented gradients(HOG),and SVM classes for summary creation.SVM rank employs the summary to extract essential phrases based on paragraph position,phrase position,numerical data,inverted comma,sentence length,and keywords features.The primary goal of the SVM optimization function is to reduce the number of features by eliminating unnecessary and redundant features.The second goal is to maintain or improve the classification system’s performance.The experiment included news articles from various genres,such as Bollywood,politics,and sports.The proposed method’s accuracy for Hindi character recognition is 96.97%,which is good compared with baseline approaches,and system-generated summaries are compared to human summaries.The evaluated results show a precision of 72%at a compression ratio of 50%and a precision of 60%at a compression ratio of 25%,in comparison to state-of-the-art methods,this is a decent result. 展开更多
关键词 Support vector machine(SVM) optimization PRECISION Hindi character recognition optical character recognition(OCR) automatic summarization and compression ratio
在线阅读 下载PDF
Unsupervised Graph-Based Tibetan Multi-Document Summarization
12
作者 Xiaodong Yan Yiqin Wang +3 位作者 Wei Song Xiaobing Zhao A.Run Yang Yanxing 《Computers, Materials & Continua》 SCIE EI 2022年第10期1769-1781,共13页
Text summarization creates subset that represents the most important or relevant information in the original content,which effectively reduce information redundancy.Recently neural network method has achieved good res... Text summarization creates subset that represents the most important or relevant information in the original content,which effectively reduce information redundancy.Recently neural network method has achieved good results in the task of text summarization both in Chinese and English,but the research of text summarization in low-resource languages is still in the exploratory stage,especially in Tibetan.What’s more,there is no large-scale annotated corpus for text summarization.The lack of dataset severely limits the development of low-resource text summarization.In this case,unsupervised learning approaches are more appealing in low-resource languages as they do not require labeled data.In this paper,we propose an unsupervised graph-based Tibetan multi-document summarization method,which divides a large number of Tibetan news documents into topics and extracts the summarization of each topic.Summarization obtained by using traditional graph-based methods have high redundancy and the division of documents topics are not detailed enough.In terms of topic division,we adopt two level clustering methods converting original document into document-level and sentence-level graph,next we take both linguistic and deep representation into account and integrate external corpus into graph to obtain the sentence semantic clustering.Improve the shortcomings of the traditional K-Means clustering method and perform more detailed clustering of documents.Then model sentence clusters into graphs,finally remeasure sentence nodes based on the topic semantic information and the impact of topic features on sentences,higher topic relevance summary is extracted.In order to promote the development of Tibetan text summarization,and to meet the needs of relevant researchers for high-quality Tibetan text summarization datasets,this paper manually constructs a Tibetan summarization dataset and carries out relevant experiments.The experiment results show that our method can effectively improve the quality of summarization and our method is competitive to previous unsupervised methods. 展开更多
关键词 multi-document summarization text clustering topic feature fusion graphic model
在线阅读 下载PDF
融合知识和语义信息的双编码器自动摘要模型 被引量:1
13
作者 贾莉 马廷淮 +1 位作者 桑晨扬 潘倩 《计算机工程与应用》 北大核心 2025年第7期213-221,共9页
为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating kn... 为了解决自动文本摘要任务存在的文本语义信息不能充分编码、生成的摘要语义冗余、原始语义信息丢失等语义问题,提出了一种融合知识和文本语义信息的双编码器自动摘要模型(dual-encoder automatic summarization model incorporating knowledge and semantic information,KSDASum)。该方法采用双编码器对原文语义信息进行充分编码,文本编码器获取全文的语义信息,图结构编码器维护全文上下文结构信息。解码器部分采用基于Transformer结构和指针网络,更好地捕捉文本和结构信息进行交互,并利用指针网络的优势提高生成摘要的准确性。同时,训练过程中采用强化学习中自我批判的策略梯度优化模型能力。该方法在CNN/Daily Mail和XSum公开数据集上与GSUM生成式摘要方法相比,在评价指标上均获得最优的结果,证明了所提模型能够有效地利用知识和语义信息,提升了生成文本摘要的能力。 展开更多
关键词 知识图谱编码器 图注意力机制 指针网络 增强训练 自动摘要
在线阅读 下载PDF
结合主题分割和自动文摘的演示文稿生成方法
14
作者 王鑫 李宁 田英爱 《计算机应用与软件》 北大核心 2025年第8期35-40,共6页
通过演示文稿传播学术成果是一种常见做法,然而手工制作演示文稿过于繁琐。该文以学术论文为蓝本,提出一种结合主题分割和自动文摘的演示文稿生成方法。该方法首先在论文章节结构的基础上对正文进行主题分割,构建演示文稿层次结构,再利... 通过演示文稿传播学术成果是一种常见做法,然而手工制作演示文稿过于繁琐。该文以学术论文为蓝本,提出一种结合主题分割和自动文摘的演示文稿生成方法。该方法首先在论文章节结构的基础上对正文进行主题分割,构建演示文稿层次结构,再利用自动文摘抽取论文中的重要文本,基于主题生成演示文稿。实验证明,该方法生成的演示文稿不仅体现论文的行文逻辑,在ROUGE-1、ROUGE-2、ROUGE-L三个指标上也均有所提高。 展开更多
关键词 演示文稿生成 主题分割 自动文摘 ROUGE指标
在线阅读 下载PDF
基于深度学习的自动文本摘要研究综述 被引量:1
15
作者 其其日力格 斯琴图 王斯日古楞 《计算机工程与应用》 北大核心 2025年第18期24-40,共17页
自动文本摘要技术是自然语言处理领域的重要研究方向,旨在实现信息的高效压缩与核心语义的保留。随着深度学习技术的快速发展,基于该技术的自动文本摘要方法逐渐成为主流。从抽取式与生成式两大技术路线出发,系统梳理了序列标注、图神... 自动文本摘要技术是自然语言处理领域的重要研究方向,旨在实现信息的高效压缩与核心语义的保留。随着深度学习技术的快速发展,基于该技术的自动文本摘要方法逐渐成为主流。从抽取式与生成式两大技术路线出发,系统梳理了序列标注、图神经网络、预训练语言模型、序列到序列模型和强化学习等技术在自动文本摘要中的应用,并分析了各类模型的优缺点;介绍了自动文本摘要领域常用的公开数据集、国内低资源语言数据集及评价指标。通过多维度实验对比分析总结了现有技术面临的问题,提出了相应的改进方案。最后,探讨了自动文本摘要的未来研究方向,为后续研究提供参考。 展开更多
关键词 自动文本摘要 深度学习 生成式摘要 抽取式摘要 自然语言处理
在线阅读 下载PDF
嵌入司法要素事实一致性评测的中文司法裁判文书摘要生成研究
16
作者 向博文 柴梦丹 向卓元 《数据分析与知识发现》 北大核心 2025年第8期73-85,共13页
【目的】鉴于司法裁判文书摘要需要与原文在基于案件事实、法律适用等要素方面保持一致,提出嵌入司法要素事实一致性评测的中文司法裁判文书摘要生成方法。【方法】定义司法裁判文书摘要事实一致性判定的原则和方法;确定数据增加、事实... 【目的】鉴于司法裁判文书摘要需要与原文在基于案件事实、法律适用等要素方面保持一致,提出嵌入司法要素事实一致性评测的中文司法裁判文书摘要生成方法。【方法】定义司法裁判文书摘要事实一致性判定的原则和方法;确定数据增加、事实一致性纠错和测评等预处理流程;分别构建分段抽取模型和引入司法要素知识图的生成式摘要模型,并在CAIL2020数据集上进行实验。【结果】本文提出的FC-JDSM模型生成的摘要在指标ROUGE-N(N=1、2、L)、SRO、EM-FCJS上分别为67.98%、55.40%、64.14%、78.54%、90.01%,均优于比较模型。消融实验证实了分块抽取和事实信息引入的有效性。【局限】事实一致性评测模型中的数据增强方案得到的数据与真实数据存在偏差。【结论】将司法要素融入一致性评测和摘要生成过程中,能提高中文司法裁判文书摘要一致性,有利于司法工作的公正性。 展开更多
关键词 司法文书 自动摘要 事实一致性 评测指标 摘要生成模型
原文传递
中文大模型生成式摘要能力评估
17
作者 王俊超 樊可汗 霍智恒 《中文信息学报》 北大核心 2025年第1期1-15,共15页
从传统的纸带机到当今大语言模型时代,自动文本摘要技术发展经历了多次质的飞跃并不断提升。但在中文摘要方面,由于其语言特点及叙述方式,机器生成的摘要难以与人工撰写的相媲美。如今,众多国产开源大模型均加强了对中文语料的训练并展... 从传统的纸带机到当今大语言模型时代,自动文本摘要技术发展经历了多次质的飞跃并不断提升。但在中文摘要方面,由于其语言特点及叙述方式,机器生成的摘要难以与人工撰写的相媲美。如今,众多国产开源大模型均加强了对中文语料的训练并展示出较为优秀的成果。为了评估这些开源大模型在中文摘要任务上的实际表现,该文筛选ChatGLM2-6B、Baichuan2-7B和InternLM-7B等中文大模型作为研究对象,在中文摘要数据集上采用不同提示词生成零样本和少样本摘要,通过自动评估和人工比对的方法详细分析了它们在自动文本摘要任务上的表现及其不足之处。评估结果表明,ChatGLM2-6B和Baichuan2-7B通过零样本的方法通常能够总结出语句通顺叙述详尽的摘要,但在凝练程度上仍有不足;而少样本的方法可以使大模型生成更为精炼的摘要,但对重点信息的把握程度明显下降。此外,大模型也存在陷入重复、出现幻觉、与事实矛盾等问题。 展开更多
关键词 自动文本摘要 大语言模型 能力评估
在线阅读 下载PDF
论民事争议焦点自动生成的正当性
18
作者 刘韵 《中国海洋大学学报(社会科学版)》 2025年第5期94-103,共10页
民事争议焦点自动生成是人工智能技术赋能下的一种本案争议焦点自动整理和确定的方式。在外部需求层面上,争议焦点自动生成为“人案矛盾”“争议焦点整理形式化”等困境提供了现代化的解决方案,契合司法改革方向。在民事诉讼内部体系的... 民事争议焦点自动生成是人工智能技术赋能下的一种本案争议焦点自动整理和确定的方式。在外部需求层面上,争议焦点自动生成为“人案矛盾”“争议焦点整理形式化”等困境提供了现代化的解决方案,契合司法改革方向。在民事诉讼内部体系的协调层面上,一方面,争议焦点自动生成可平衡公正和效率价值之间的张力,在保障平等原则实质化的同时,推动处分原则、辩论原则的时代化发展;另一方面,在“审前+庭审”两阶段程序构造下,本案争议焦点在审前程序中自动生成与审前程序的目的及阶段性权利保护程度相匹配。在技术支撑层面上,民事争议焦点自动生成内在的请求权基础思维、攻击防御体系的对抗式过程场景,与计算机的线性程序模式和标准化决策结构契合,具有技术可行性。 展开更多
关键词 争议焦点整理 争议焦点自动生成 正当性基础 程序相称 程序保障
在线阅读 下载PDF
基于分层表示和上下文增强的类摘要生成技术 被引量:2
19
作者 陈豪伶 虞慧群 +2 位作者 范贵生 李明辰 黄子杰 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期307-323,共17页
代码摘要是源代码的自然语言解释,高质量的代码摘要有助于提高开发人员程序理解效率.近年来,代码自动摘要的研究集中在为方法粒度的代码片段生成摘要.然而,对于面向对象的语言,例如Java,类才是项目的基本组成单元.基于上述问题,提出一... 代码摘要是源代码的自然语言解释,高质量的代码摘要有助于提高开发人员程序理解效率.近年来,代码自动摘要的研究集中在为方法粒度的代码片段生成摘要.然而,对于面向对象的语言,例如Java,类才是项目的基本组成单元.基于上述问题,提出一种基于分层表示和上下文增强的类摘要生成方法HRCE(hierarchical representation and context enhancement),并构建了一个包含358 992个?Java类,上下文,摘要?数据对的类摘要数据集.HRCE使用代码精简策略去除类的非关键代码,从而缩短代码长度.然后,对类的层次结构,包括类签名、属性和方法分别进行建模,获得类的语义信息和层次结构信息.此外,从项目中抽取父类的签名及摘要来刻画类在项目中依赖的上下文.实验表明,基于分层表示和上下文增强的生成模型能够表征代码的语义和层次结构,并可以从目标类的内部和外部获取信息. HRCE在BLEU,METEOR,ROUGE-L等评估指标上超过了所有基准模型. 展开更多
关键词 代码自动摘要 分层表示 上下文增强 深度学习 类摘要
在线阅读 下载PDF
AIGC驱动古籍自动摘要研究:从自然语言理解到生成 被引量:10
20
作者 吴娜 刘畅 +1 位作者 刘江峰 王东波 《图书馆论坛》 CSSCI 北大核心 2024年第9期111-123,共13页
作为自然语言处理中的关键任务,旨在压缩长文本信息、解决文本信息过载问题。文章以《二十四史》中的人物列传语料为例,从抽取式和生成式方法出发,探索AIGC技术驱动下古籍文本自动摘要应用的可行路径,为古籍资源的创造性转化和创新性发... 作为自然语言处理中的关键任务,旨在压缩长文本信息、解决文本信息过载问题。文章以《二十四史》中的人物列传语料为例,从抽取式和生成式方法出发,探索AIGC技术驱动下古籍文本自动摘要应用的可行路径,为古籍资源的创造性转化和创新性发展提供参考,助力数字人文理念下的古籍内容价值实现。首先基于GujiBERT、SikuBERT、BERT-ancient-Chinese模型进行语义表征,并使用LexRank算法进行重要性排序以抽取摘要。然后利用GPT-3.5-turbo、GPT-4和ChatGLM3模型生成摘要,并构建ChatGLM3和GPT-3.5-turbo微调模型。最后采用信息覆盖率和信息多样性指标对抽取式摘要结果进行评测,采用rouge和mauve指标对生成式摘要结果进行评测。研究表明:SikuBERT在抽取式摘要任务中对古文的语义表征能力和理解能力较强;通用大语言模型在古籍领域的自动摘要能力各有特色,但主旨提炼能力有所欠缺;通过小样本数据集微调GPT-3.5-turbo和ChatGLM3模型能有效提升模型的摘要生成能力。 展开更多
关键词 古籍价值再造 自动摘要 SikuBERT 大语言模型
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部