期刊文献+
共找到4,732篇文章
< 1 2 237 >
每页显示 20 50 100
Multi-dimensional database design and implementation of dam safety monitoring system 被引量:2
1
作者 Zhao Erfeng Wang Yachao +2 位作者 Jiang Yufeng Zhang Lei Yu Hong 《Water Science and Engineering》 EI CAS 2008年第3期112-120,共9页
To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mod... To improve the effectiveness of dam safety monitoring database systems,the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode.The optimal data model was confirmed by identifying data objects,defining relations and reviewing entities.The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely.On this basis,a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established,for which factual tables and dimensional tables have been designed.Finally,based on service design and user interface design,the dam safety monitoring system has been developed with Delphi as the development tool.This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design.It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers. 展开更多
关键词 dam safety multi-dimensional database conceptual data model database mode monitoring system
在线阅读 下载PDF
Incidence and Survivability of Acute Lymphocytic Leukemia Patients in the United States: Analysis of SEER Data Set from 2000-2019
2
作者 Ishan Ghosh Sudipto Mukherjee 《Journal of Cancer Therapy》 2024年第4期141-163,共23页
The main goal of this research is to assess the impact of race, age at diagnosis, sex, and phenotype on the incidence and survivability of acute lymphocytic leukemia (ALL) among patients in the United States. By takin... The main goal of this research is to assess the impact of race, age at diagnosis, sex, and phenotype on the incidence and survivability of acute lymphocytic leukemia (ALL) among patients in the United States. By taking these factors into account, the study aims to explore how existing cancer registry data can aid in the early detection and effective treatment of ALL in patients. Our hypothesis was that statistically significant correlations exist between race, age at which patients were diagnosed, sex, and phenotype of the ALL patients, and their rate of incidence and survivability data were evaluated using SEER*Stat statistical software from National Cancer Institute. Analysis of the incidence data revealed that a higher prevalence of ALL was among the Caucasian population. The majority of ALL cases (59%) occurred in patients aged between 0 to 19 years at the time of diagnosis, and 56% of the affected individuals were male. The B-cell phenotype was predominantly associated with ALL cases (73%). When analyzing survivability data, it was observed that the 5-year survival rates slightly exceeded the 10-year survival rates for the respective demographics. Survivability rates of African Americans patients were the lowest compared to Caucasian, Asian, Pacific Islanders, Alaskan Native, Native Americans and others. Survivability rates progressively decreased for older patients. Moreover, this study investigated the typical treatment methods applied to ALL patients, mainly comprising chemotherapy, with occasional supplementation of radiation therapy as required. The study demonstrated the considerable efficacy of chemotherapy in enhancing patients’ chances of survival, while those who remained untreated faced a less favorable prognosis from the disease. Although a significant amount of data and information exists, this study can help doctors in the future by diagnosing patients with certain characteristics. It will further assist the health care professionals in screening potential patients and early detection of cases. This could also save the lives of elderly patients who have a higher mortality rate from this disease. 展开更多
关键词 Acute Lymphocytic Leukemia SURVIVABILITY INCIDENCE DEMOGRAPHY SEER data set
暂未订购
Goodness-of-fit tests for multi-dimensional copulas:Expanding application to historical drought data 被引量:2
3
作者 Ming-wei MA Li-liang REN +2 位作者 Song-bai SONG Jia-li SONG Shan-hu JIANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期18-30,共13页
The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for mul... The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt's transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required. 展开更多
关键词 goodness-of-fit test multi-dimensional copulas stochastic simulation Rosenblatt'stransformation bootstrap approach drought data
在线阅读 下载PDF
Application Research of Multi-Dimensional Customer Behavior Analysis Model in Precision Marketing
4
作者 Shuotong Dong 《Open Journal of Applied Sciences》 2024年第12期3589-3600,共12页
The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends ... The advent of the digital era has provided unprecedented opportunities for businesses to collect and analyze customer behavior data. Precision marketing, as a key means to improve marketing efficiency, highly depends on a deep understanding of customer behavior. This study proposes a theoretical framework for multi-dimensional customer behavior analysis, aiming to comprehensively capture customer behavioral characteristics in the digital environment. This framework integrates concepts of multi-source data including transaction history, browsing trajectories, social media interactions, and location information, constructing a theoretically more comprehensive customer profile. The research discusses the potential applications of this theoretical framework in precision marketing scenarios such as personalized recommendations, cross-selling, and customer churn prevention. Through analysis, the study points out that multi-dimensional analysis may significantly improve the targeting and theoretical conversion rates of marketing activities. However, the research also explores theoretical challenges that may be faced in the application process, such as data privacy and information overload, and proposes corresponding conceptual coping strategies. This study provides a new theoretical perspective on how businesses can optimize marketing decisions using big data thinking while respecting customer privacy, laying a foundation for future empirical research. 展开更多
关键词 Customer Behavior Analysis Precision Marketing multi-dimensional Model data Theory Personalized Recommendation
在线阅读 下载PDF
Data inversion of multi-dimensional magnetic resonance in porous media
5
作者 Fangrong Zong Huabing Liu +1 位作者 Ruiliang Bai Petrik Galvosas 《Magnetic Resonance Letters》 2023年第2期127-139,I0004,共14页
Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension all... Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR. 展开更多
关键词 multi-dimensional MR data inversion Porous media Inverse Laplace transform FOURIERTRANSFORM
在线阅读 下载PDF
3D Seismic Data Reconstruction based on Weighted Fast Iterative Shrinkage Thresholding algorithm
6
作者 Zhang Hua Qiu Da-Xing +3 位作者 Mo Zi-Fen Hao Ya-Ju Wu Zhao-Qi Dai Meng-Xue 《Applied Geophysics》 2025年第1期22-34,231,232,共15页
Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data in... Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data into a series of time slices and independently reconstructs each time slice.However,when this strategy is employed,the potential correlations between two adjacent time slices are ignored,which degrades reconstruction performance.Therefore,this study proposes the use of a two-dimensional curvelet transform and the fast iterative shrinkage thresholding algorithm for data reconstruction.Based on the significant overlapping characteristics between the curvelet coefficient support sets of two adjacent time slices,a weighted operator is constructed in the curvelet domain using the prior support set provided by the previous reconstructed time slice to delineate the main energy distribution range,eff ectively providing prior information for reconstructing adjacent slices.Consequently,the resulting weighted fast iterative shrinkage thresholding algorithm can be used to reconstruct 3D seismic data.The processing of synthetic and field data shows that the proposed method has higher reconstruction accuracy and faster computational speed than the conventional fast iterative shrinkage thresholding algorithm for handling missing 3D seismic data. 展开更多
关键词 data reconstruction fast iterative shrinkage thresholding prior support set weighted operator
在线阅读 下载PDF
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data
7
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 Multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
Question classification in question answering based on real-world web data sets
8
作者 袁晓洁 于士涛 +1 位作者 师建兴 陈秋双 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期272-275,共4页
To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,t... To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance. 展开更多
关键词 question classification question answering real-world web data sets question and answer web forums re-ranking model
在线阅读 下载PDF
Reconstruction of incomplete satellite SST data sets based on EOF method 被引量:2
9
作者 DING Youzhuan WEI Zhihui +2 位作者 MAO Zhihua WANG Xiaofei PAN Delu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第2期36-44,共9页
As for the satellite remote sensing data obtained by the visible and infrared bands myers,on, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thi... As for the satellite remote sensing data obtained by the visible and infrared bands myers,on, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thin clouds difficult to be detected would cause the data of the inversion products to be abnormal. Alvera et a1.(2005) proposed a method for the reconstruction of missing data based on an Empirical Orthogonal Functions (EOF) decomposition, but his method couldn't process these images presenting extreme cloud coverage(more than 95%), and required a long time for recon- struction. Besides, the abnormal data in the images had a great effect on the reconstruction result. Therefore, this paper tries to improve the study result. It has reconstructed missing data sets by twice applying EOF decomposition method. Firstly, the abnormity time has been detected by analyzing the temporal modes of EOF decomposition, and the abnormal data have been eliminated. Secondly, the data sets, excluding the abnormal data, are analyzed by using EOF decomposition, and then the temporal modes undergo a filtering process so as to enhance the ability of reconstruct- ing the images which are of no or just a little data, by using EOF. At last, this method has been applied to a large data set, i.e. 43 Sea Surface Temperature (SST) satellite images of the Changjiang River (Yangtze River) estuary and its adjacent areas, and the total reconstruction root mean square error (RMSE) is 0.82℃. And it has been proved that this improved EOF reconstruction method is robust for reconstructing satellite missing data and unreliable data. 展开更多
关键词 EOF SST Changjiang River estuary Missing data sets
在线阅读 下载PDF
Traffic Flow Data Forecasting Based on Interval Type-2 Fuzzy Sets Theory 被引量:5
10
作者 Runmei Li Chaoyang Jiang +1 位作者 Fenghua Zhu Xiaolong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期141-148,共8页
This paper proposes a long-term forecasting scheme and implementation method based on the interval type-2 fuzzy sets theory for traffic flow data. The type-2 fuzzy sets have advantages in modeling uncertainties becaus... This paper proposes a long-term forecasting scheme and implementation method based on the interval type-2 fuzzy sets theory for traffic flow data. The type-2 fuzzy sets have advantages in modeling uncertainties because their membership functions are fuzzy. The scheme includes traffic flow data preprocessing module, type-2 fuzzification operation module and long-term traffic flow data forecasting output module, in which the Interval Approach acts as the core algorithm. The central limit theorem is adopted to convert point data of mass traffic flow in some time range into interval data of the same time range (also called confidence interval data) which is being used as the input of interval approach. The confidence interval data retain the uncertainty and randomness of traffic flow, meanwhile reduce the influence of noise from the detection data. The proposed scheme gets not only the traffic flow forecasting result but also can show the possible range of traffic flow variation with high precision using upper and lower limit forecasting result. The effectiveness of the proposed scheme is verified using the actual sample application. © 2014 Chinese Association of Automation. 展开更多
关键词 data handling Forecasting Fuzzy sets Membership functions Uncertainty analysis
在线阅读 下载PDF
An Evaluation of the Reliability of Complex Systems Using Shadowed Sets and Fuzzy Lifetime Data 被引量:3
11
作者 Olgierd Hryniewicz 《International Journal of Automation and computing》 EI 2006年第2期145-150,共6页
In this paper, we consider the problem of the evaluation of system reliability using statistical data obtained from reliability tests of its elements, in which the lifetimes of elements are described using an exponent... In this paper, we consider the problem of the evaluation of system reliability using statistical data obtained from reliability tests of its elements, in which the lifetimes of elements are described using an exponential distribution. We assume that this lifetime data may be reported imprecisely and that this lack of precision may be described using fuzzy sets. As the direct application of the fuzzy sets methodology leads in this case to very complicated and time consuming calculations, we propose simple approximations of fuzzy numbers using shadowed sets introduced by Pedrycz (1998). The proposed methodology may be simply extended to the case of general lifetime probability distributions. 展开更多
关键词 Estimation of reliability fuzzy reliability data shadowed sets.
在线阅读 下载PDF
A generalized rough set-based information flling technique for failure analysis of thruster experimental data 被引量:1
12
作者 Han Shan Zhu Qiang +1 位作者 Li Jianxun Chen Lin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1182-1194,共13页
Interval-valued data and incomplete data are two key problems for failure analysis of thruster experimental data and have been basically solved by the proposed methods in this paper. Firstly, information data acquired... Interval-valued data and incomplete data are two key problems for failure analysis of thruster experimental data and have been basically solved by the proposed methods in this paper. Firstly, information data acquired from the simulation and evaluation system formed as intervalvalued information system (IIS) is classified by the interval similarity relation. Then, as an improvement of the classical rough set, a new kind of generalized information entropy called "H'-information entropy" is suggested for the measurement of uncertainty and the classification ability of IIS. There is an innovative information filling technique using the properties of H'-information entropy to replace missing data by some smaller estimation intervals. Finally, an improved method of failure analysis synthesized by the above achievements is presented to classify the thruster experimental data, complete the information, and extract the failure rules. The feasibility and advantage of this method is testified by an actual application of failure analysis, whose performance is evaluated by the quantification of E-condition entropy. 展开更多
关键词 data acquisition data classification Failure analysis Information filling Rough set
原文传递
Finding Main Causes of Elevator Accidents via Multi-Dimensional Association Rule in Edge Computing Environment 被引量:2
13
作者 Hongman Wang Mengqi Zeng +1 位作者 Zijie Xiong Fangchun Yang 《China Communications》 SCIE CSCD 2017年第11期39-47,共9页
In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and impl... In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents. 展开更多
关键词 elevator group accidents APRIORI multi-dimensional association rules data cube edge computing
在线阅读 下载PDF
A Direct Data-Cluster Analysis Method Based on Neutrosophic Set Implication 被引量:2
14
作者 Sudan Jha Gyanendra Prasad Joshi +2 位作者 Lewis Nkenyereya Dae Wan Kim Florentin Smarandache 《Computers, Materials & Continua》 SCIE EI 2020年第11期1203-1220,共18页
Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters.A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets... Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters.A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets.This paper focuses on cluster analysis based on neutrosophic set implication,i.e.,a k-means algorithm with a threshold-based clustering technique.This algorithm addresses the shortcomings of the k-means clustering algorithm by overcoming the limitations of the threshold-based clustering algorithm.To evaluate the validity of the proposed method,several validity measures and validity indices are applied to the Iris dataset(from the University of California,Irvine,Machine Learning Repository)along with k-means and threshold-based clustering algorithms.The proposed method results in more segregated datasets with compacted clusters,thus achieving higher validity indices.The method also eliminates the limitations of threshold-based clustering algorithm and validates measures and respective indices along with k-means and threshold-based clustering algorithms. 展开更多
关键词 data clustering data mining neutrosophic set K-MEANS validity measures cluster-based classification hierarchical clustering
在线阅读 下载PDF
Frequent item sets mining from high-dimensional dataset based on a novel binary particle swarm optimization 被引量:2
15
作者 张中杰 黄健 卫莹 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1700-1708,共9页
A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic... A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE. 展开更多
关键词 data mining frequent item sets particle swarm optimization
在线阅读 下载PDF
Design of similarity measure for discrete data and application to multi-dimension 被引量:1
16
作者 LEE Myeong-ho 魏荷 +2 位作者 LEE Sang-hyuk LEE Sang-min SHIN Seung-soo 《Journal of Central South University》 SCIE EI CAS 2013年第4期982-987,共6页
Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and d... Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem. 展开更多
关键词 similarity measure multi-dimension discrete data relative degree power interconnected system
在线阅读 下载PDF
A Generalized Rough Set Approach to Attribute Generalization in Data Mining 被引量:4
17
作者 李天瑞 徐扬 《Journal of Modern Transportation》 2000年第1期69-75,共7页
This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the L... This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases. 展开更多
关键词 rough set data mining inductive learning
在线阅读 下载PDF
Influence of image data set noise on classification with a convolutional network 被引量:2
18
作者 Wei Tao Shuai Liguo Zhang Yulu 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期51-56,共6页
To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different typ... To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different types and proportions of data noise are added to two reference data sets, Cifar-10 and Cifar-100. Then, this data containing noise is used to train deep convolutional models and classify the validation data set. The experimental results show that the noise in the data set has obvious adverse effects on deep convolutional network classification models. The adverse effects of random noise are small, but the cross-category noise among categories can significantly reduce the recognition ability of the model. Therefore, a solution is proposed to improve the quality of the data sets that are mixed into a single noise category. The model trained with a data set containing noise is used to evaluate the current training data and reclassify the categories of the anomalies to form a new data set. Repeating the above steps can greatly reduce the noise ratio, so the influence of cross-category noise can be effectively avoided. 展开更多
关键词 image recognition data set noise deep convolutional network filtering of cross-category noise
在线阅读 下载PDF
Oil-gas reservoir in the Mesozoic strata in the Chaoshan depression,northern South China Sea:a new insight from long off set seismic data 被引量:1
19
作者 Tao XING Guangjian ZHONG +2 位作者 Wenhuan ZHAN Zhongquan ZHAO Xi CHEN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1377-1387,共11页
The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for ... The Chaoshan depression,a Mesozoic basin in the Dongsha sea area,northern South China Sea,is characterized by well-preserved Mesozoic strata,being good conditions for oil-gas preservation,promising good prospects for oil-gas exploration.However,breakthrough in oil-gas exploration in the Mesozoic strata has not been achieved due to less seismic surveys.New long-off set seismic data were processed that acquired with dense grid with single source and single cable.In addition,the data were processed with 3D imaging method and fi ner processing was performed to highlight the target strata.Combining the new imaging result and other geological information,we conducted integrated interpretation and proposed an exploratory well A-1-1 for potential hydrocarbon.The result provides a reliable basis for achieving breakthroughs in oil and gas exploration in the Mesozoic strata in the northern South China Sea. 展开更多
关键词 Chaoshan depression Mesozoic strata oil and gas exploration long off set seismic data integrated interpretation exploratory well
在线阅读 下载PDF
Domain-Oriented Data-Driven Data Mining Based on Rough Sets 被引量:1
20
作者 Guoyin Wang 《南昌工程学院学报》 CAS 2006年第2期46-46,共1页
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data... Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world. 展开更多
关键词 data mining data-DRIVEN USER-DRIVEN domain-driven KDD Machine Learning Knowledge Acquisition rough sets
在线阅读 下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部