Traditional Chinese medicine(TCM)auscultation has a long history,and with advancements in equipment and analytical methods,the quantitative analysis of auscultation parameters has determined.However,the complexity and...Traditional Chinese medicine(TCM)auscultation has a long history,and with advancements in equipment and analytical methods,the quantitative analysis of auscultation parameters has determined.However,the complexity and diversity of auscultation,along with variations in devices,analytical methods,and applications,bring challenges to its standardization and deeper application.This review presents the advancements in auscultation equipment and systems,auscultation characteristic parameters,and their application in the diagnosis of pulmonary diseases and syndromes over the past 10 years,while also exploring the progress and challenges of current digital research of auscultation.This review also proposes the establishment of standardized protocols for the collection and analysis of auscultation data,the incorporation of advanced artificial intelligence(AI)auscultation analysis methods,and an exploration of the diagnostic utility of auscultatory features in pulmonary diseases and syndromes,so as to provide more precise decision support for intelligent diagnosis of pulmonary diseases and syndromes.展开更多
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different...The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.展开更多
Based on the data of cloud-to-ground lightning obtained by the lightning detection system in Hongya County during 2011-2015,the parameters of lightning current intensity and steepness in Hongya County were analyzed,an...Based on the data of cloud-to-ground lightning obtained by the lightning detection system in Hongya County during 2011-2015,the parameters of lightning current intensity and steepness in Hongya County were analyzed,and the lightning parameters and the annual average density of lightning stroke to earth were discussed in combination with the Design Code for Protection of Structures against Lightning(GB 50057-2010),so as to provide scientific guidance for lightning disaster prevention in Hongya County.展开更多
The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fi...The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fitting methods often overestimate the charge transfer overpotential,leading to substantial errors in reaction rate constant measurements.These inaccuracies hinder the accurate prediction of voltage profiles and overall cell performance.In this study,we propose the characteristic time-decomposed overpotential(CTDO)method,which employs a single-layer particle electrode(SLPE)structure to eliminate interference overpotentials.By leveraging the distribution of relaxation times(DRT),our method effectively isolates the characteristic time of the charge transfer process,enabling a more precise determination of the reaction rate constant.Simulation results indicate that our approach reduces measurement errors to below 2%,closely aligning with theoretical values.Furthermore,experimental validation demonstrates an 80% reduction in error compared to the conventional galvanostatic intermittent titration technique(GITT)method.Overall,this study provides a novel voltage-based approach for determining the reaction rate constant,enhancing the applicability of theoretical analysis in electrode structural design and facilitating rapid battery optimization.展开更多
The seepage characteristics of shale reservoirs are influenced not only by multi-field coupling effects such as stress field,temperature field,and seepage field but also exhibit evident creep characteristics during oi...The seepage characteristics of shale reservoirs are influenced not only by multi-field coupling effects such as stress field,temperature field,and seepage field but also exhibit evident creep characteristics during oil and gas exploitation.The complex fluid flow in such reservoirs is analyzed using a combination of theoretical modeling and numerical simulation.This study develops a comprehensive mathematical model that integrates the impact of creep on the seepage process,with consideration of factors including stress,strain,and time-dependent deformation.The model is validated through a series of numerical experiments,which demonstrate the significant influence of creep on the seepage behavior.The results indicate that the rock mechanical parameters and creep constitutive model were determined through triaxial compression tests and uniaxial creep tests.A creep-seepage coupling control equation for shale was established based on the Burgers creep model.The absolute value of the volumetric strain of shale increases rapidly in the initial creep stage,and the increase in vertical stress accelerates the rock’s creep deformation.During the deceleration creep stage,the volumetric strain of the reservoir increases rapidly,leading to a significant decrease in permeability.In the stable creep stage,the pores and fractures in the rock are further compressed,causing a gradual reduction in permeability,which eventually stabilizes.展开更多
Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial rol...Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial role played by gravel in the ecological restoration of these grasslands.This study utilizes supervised classification and segmentation techniques based on machine learning to extract gravel morphology profiles from field-sampled plot images and calculate their characteristic parameters.Employing a multivariate linear approach combined with Principal Component Analysis(PCA),a model for inferring gravel characteristic parameters is constructed.Statistical features,particle size characteristics,and spatial distribution patterns of gravel are analyzed.Results reveal that gravel predominantly exhibit sub-rounded shapes,with 80%classified as fine gravel.The coefficients of determination(R2)between gravel particle size and coverage,perimeter,and area are 0.444,0.724,and 0.557,respectively,indicating linear relationships.The cumulative contribution rate of the top five remote sensing factors is 95.44%,with the first geological factor contributing 77.64%,collectively reflecting the primary information of the 20 factors used.Modeling shows that areas with larger gravel particle sizes correspond to increased perimeter and coverage.Gravels in the Nagqu Prefecture of northern Xizang have a particle size range of 4-8 mm,primarily comprising fine gravel which accounts for 94.61%.These findings provide a scientific basis for extracting gravel characteristic parameters and understanding their spatial distribution variations in the northern Tibetan Plateau.展开更多
Parameter estimation to alpha stable distribution is difficult for without a explicit probability density function. On the base of sample characteristic function,an iterative LAD parameter estimation algorithm for SaS...Parameter estimation to alpha stable distribution is difficult for without a explicit probability density function. On the base of sample characteristic function,an iterative LAD parameter estimation algorithm for SaS is discussed. The example illustrates that the algorithm is feasible and efficient.展开更多
A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wi...A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.展开更多
The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis sh...The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.展开更多
The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
This paper is aimed at the whole Bohai Sea, as the complement and improvement of wave characteristics and extreme parameters. Wave fields were simulated in the Bohai Sea by using wave model SWAN from 1985 to 2004. The...This paper is aimed at the whole Bohai Sea, as the complement and improvement of wave characteristics and extreme parameters. Wave fields were simulated in the Bohai Sea by using wave model SWAN from 1985 to 2004. The input data based on the hindcast of high-resolution wind fields from RAMS and water level fields from POM, which have been tested and verified well. Comparisons of significant wave heights between simulation and station observations show a good agreement in general. By statistical analysis, the wave characteristics such as significant wave heights, dominant wave directions and their seasonal variations are discussed. In addition, main wave extreme parameters and directional extreme values particularly for 100-year return period are investigated.展开更多
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ...In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.展开更多
The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the charact...The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the characteristic parameters of echo signals is adopted to develop a detector of range-spread targets in Gaussian noise.Firstly,the characteristic parameters of the return signals in the entire range profiles of radar are investigated.Secondly,the clustering analysis of the characteristic parameter matrix is discussed to extract the test statistic of echoes.Finally,the probabilities of detection and false alarm of the proposed detector are provided.Theoretical analysis shows that the proposed detector does not need the prior knowledge about the spatial distribution of the target scattering centers in practical scenarios,and it is simple and robust even in low signal-to-noise ratio(low-SNR)scenarios.Monte Carlo(MC)simulations reveal that the detection performance of the proposed detector outperforms the conventional detectors.展开更多
The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this ...The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.展开更多
The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of...The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.展开更多
Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: ra...Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: radiation source, brightness temperature, radiation lifetime, polarized radiation, radiation mechanism, and character of superposition are affirmed.展开更多
According to the time-resolved spectra of lightning return stroke process and based on the plasma transmission theory,the evolution characteristics of the thermal conductivity and thermal diffusion coefficient of the ...According to the time-resolved spectra of lightning return stroke process and based on the plasma transmission theory,the evolution characteristics of the thermal conductivity and thermal diffusion coefficient of the discharge channel over time during the lightning return stroke are discussed.The radial distribution of the channel temperature in the lightning peak current phase is calculated,and the heat transfer along the radial direction of the channel is analyzed.The calculated transmission characteristic parameter values of the lightning discharge channel are all in a reasonable range.The results show that the heat transport coefficient of the lightning channel is closely related to the channel temperature and electron density.After returning to the peak current,the channel temperature slowly decreases,and the transport coefficient shows a non-linear and monotonous decay trend.The closer to the current core channel is,the greater the temperature gradient is,and the more the heat transferred radially outward is.展开更多
The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, a...The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-Tc radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time-frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.展开更多
基金National Natural Science Foundation of China(82104738)National Administration of Traditional Chinese Medicine(TCM)High-level Key Discipline Construction Project:TCM Diagnostics(ZYYZDXK-2023069).
文摘Traditional Chinese medicine(TCM)auscultation has a long history,and with advancements in equipment and analytical methods,the quantitative analysis of auscultation parameters has determined.However,the complexity and diversity of auscultation,along with variations in devices,analytical methods,and applications,bring challenges to its standardization and deeper application.This review presents the advancements in auscultation equipment and systems,auscultation characteristic parameters,and their application in the diagnosis of pulmonary diseases and syndromes over the past 10 years,while also exploring the progress and challenges of current digital research of auscultation.This review also proposes the establishment of standardized protocols for the collection and analysis of auscultation data,the incorporation of advanced artificial intelligence(AI)auscultation analysis methods,and an exploration of the diagnostic utility of auscultatory features in pulmonary diseases and syndromes,so as to provide more precise decision support for intelligent diagnosis of pulmonary diseases and syndromes.
基金funded by the National Natural Science Foundation of China(32360321)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2023AAC03046,2023AAC02018)the Ningxia Key Research and Development Project(2021BEG02011).
文摘The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.
文摘Based on the data of cloud-to-ground lightning obtained by the lightning detection system in Hongya County during 2011-2015,the parameters of lightning current intensity and steepness in Hongya County were analyzed,and the lightning parameters and the annual average density of lightning stroke to earth were discussed in combination with the Design Code for Protection of Structures against Lightning(GB 50057-2010),so as to provide scientific guidance for lightning disaster prevention in Hongya County.
基金supported by the National Key R&D Program of China 2022YFB2404300the National Natural Science Foundation of China U22B2069the China Postdoctoral Science Foundation 2024M761006。
文摘The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fitting methods often overestimate the charge transfer overpotential,leading to substantial errors in reaction rate constant measurements.These inaccuracies hinder the accurate prediction of voltage profiles and overall cell performance.In this study,we propose the characteristic time-decomposed overpotential(CTDO)method,which employs a single-layer particle electrode(SLPE)structure to eliminate interference overpotentials.By leveraging the distribution of relaxation times(DRT),our method effectively isolates the characteristic time of the charge transfer process,enabling a more precise determination of the reaction rate constant.Simulation results indicate that our approach reduces measurement errors to below 2%,closely aligning with theoretical values.Furthermore,experimental validation demonstrates an 80% reduction in error compared to the conventional galvanostatic intermittent titration technique(GITT)method.Overall,this study provides a novel voltage-based approach for determining the reaction rate constant,enhancing the applicability of theoretical analysis in electrode structural design and facilitating rapid battery optimization.
基金supported by the National Natural Science Foundation of China(Grant Nos.42472195 and 42272153)the Research Fund of PetroChina Tarim Oilfield Company(Grant No.671023060003)Technology Projects of China National Petroleum Corporation(Grant No.2023ZZ16YJ02).
文摘The seepage characteristics of shale reservoirs are influenced not only by multi-field coupling effects such as stress field,temperature field,and seepage field but also exhibit evident creep characteristics during oil and gas exploitation.The complex fluid flow in such reservoirs is analyzed using a combination of theoretical modeling and numerical simulation.This study develops a comprehensive mathematical model that integrates the impact of creep on the seepage process,with consideration of factors including stress,strain,and time-dependent deformation.The model is validated through a series of numerical experiments,which demonstrate the significant influence of creep on the seepage behavior.The results indicate that the rock mechanical parameters and creep constitutive model were determined through triaxial compression tests and uniaxial creep tests.A creep-seepage coupling control equation for shale was established based on the Burgers creep model.The absolute value of the volumetric strain of shale increases rapidly in the initial creep stage,and the increase in vertical stress accelerates the rock’s creep deformation.During the deceleration creep stage,the volumetric strain of the reservoir increases rapidly,leading to a significant decrease in permeability.In the stable creep stage,the pores and fractures in the rock are further compressed,causing a gradual reduction in permeability,which eventually stabilizes.
基金funded by the Major R&D and Achievement Transformation Projects of Xizang(CGZH2024000416)Science and Technology Program of Xizang(XZ202402ZD0001)Major R&D and Achievement Transformation Projects of Qinghai(2022-QY-224)。
文摘Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial role played by gravel in the ecological restoration of these grasslands.This study utilizes supervised classification and segmentation techniques based on machine learning to extract gravel morphology profiles from field-sampled plot images and calculate their characteristic parameters.Employing a multivariate linear approach combined with Principal Component Analysis(PCA),a model for inferring gravel characteristic parameters is constructed.Statistical features,particle size characteristics,and spatial distribution patterns of gravel are analyzed.Results reveal that gravel predominantly exhibit sub-rounded shapes,with 80%classified as fine gravel.The coefficients of determination(R2)between gravel particle size and coverage,perimeter,and area are 0.444,0.724,and 0.557,respectively,indicating linear relationships.The cumulative contribution rate of the top five remote sensing factors is 95.44%,with the first geological factor contributing 77.64%,collectively reflecting the primary information of the 20 factors used.Modeling shows that areas with larger gravel particle sizes correspond to increased perimeter and coverage.Gravels in the Nagqu Prefecture of northern Xizang have a particle size range of 4-8 mm,primarily comprising fine gravel which accounts for 94.61%.These findings provide a scientific basis for extracting gravel characteristic parameters and understanding their spatial distribution variations in the northern Tibetan Plateau.
基金Supported by Hubei Educational Committee grant Q20091809Wuhan Polytechnic University grant 2009Y21
文摘Parameter estimation to alpha stable distribution is difficult for without a explicit probability density function. On the base of sample characteristic function,an iterative LAD parameter estimation algorithm for SaS is discussed. The example illustrates that the algorithm is feasible and efficient.
基金The National Science Foundation of China under Grant No.51378111the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-13-0128+2 种基金the Fok Ying-Tong Education Foundation for Young Teachersin the Higher Education Institutions of China under Grant No.142007the Fundamental Research Funds for the Central Universities under Grant No.2242012R30002the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering under Grant No.JSKL2011YB02
文摘A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.
文摘The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.40976005 and 40930844)
文摘This paper is aimed at the whole Bohai Sea, as the complement and improvement of wave characteristics and extreme parameters. Wave fields were simulated in the Bohai Sea by using wave model SWAN from 1985 to 2004. The input data based on the hindcast of high-resolution wind fields from RAMS and water level fields from POM, which have been tested and verified well. Comparisons of significant wave heights between simulation and station observations show a good agreement in general. By statistical analysis, the wave characteristics such as significant wave heights, dominant wave directions and their seasonal variations are discussed. In addition, main wave extreme parameters and directional extreme values particularly for 100-year return period are investigated.
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
基金the National Science Foundation of China(No.42074136 and U19B2008)the Major National Science and Technology Projects(No.2016ZX05027004-001 and 2016ZX05002-005-009)+1 种基金the Fundamental Research Funds for the Central Universities(No.19CX02007A)China Postdoctoral Science Foundation(No.2020M672170).
文摘In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.
基金supported by the National Natural Science Foundation of China(61571043)the 111 Project of China(B14010)
文摘The statistical characterization of radar range cells with the target signals is much more distinct than that of the range cells with noise-only signals.Hence,the quasi-optimal detection principle based on the characteristic parameters of echo signals is adopted to develop a detector of range-spread targets in Gaussian noise.Firstly,the characteristic parameters of the return signals in the entire range profiles of radar are investigated.Secondly,the clustering analysis of the characteristic parameter matrix is discussed to extract the test statistic of echoes.Finally,the probabilities of detection and false alarm of the proposed detector are provided.Theoretical analysis shows that the proposed detector does not need the prior knowledge about the spatial distribution of the target scattering centers in practical scenarios,and it is simple and robust even in low signal-to-noise ratio(low-SNR)scenarios.Monte Carlo(MC)simulations reveal that the detection performance of the proposed detector outperforms the conventional detectors.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘The structure parameters in an actual industrial production have a great influence on the coefficient of supercharger floating bearing dynamic characteristics,but there has been little systematic study so far.In this paper,the influence of structural parameters of the turbocharger floating bearing on its dynamic characteristic coefficientsis systematically investigated based on the theories of hydrodynamic lubrication and tribology.The influence of clearance ratio on eccentricity and the influence of internal to external radius ratios,and Sommerfeld number were analyzed.A new formula of responding characteristics of the oil film force caused by the displacement or velocity disturbance was deduced near an equilibrium in the steady state.Applying the newly developed formula,the dynamic characteristic was studied for floating bearings.Regularity for change of oil film stiffness and damping was analyzed with the structural parameters of floating bearing such as radius ratios and eccentricity.It has been found that the clearance ratio increases with eccentricity when the radius ratio is unchanged.The eccentricity decreases with the internal to external radius ratio of floating rings when the clearance ratio is constant.The absolute value of total principal stiffness and total main damping decrease with the clearance ratio and radius ratio of floating rings when the total cross damping is stable.The results and findings in this paper can contribute to nonlinear dynamics designs of turbocharger rotor-bearing systems.
基金Supported by the National Key Basic Research Development Program of China(973 Program)(2007CB607605)the National Natural Science Foundation of China(50965008)
文摘The influence of MoS2 on the tribology characteristic parameter of Ni60A/MoS2 composite lubricating coating was researched on the UMT-2 fretting abrasion tester (USA) The result shows that with increasing content of MoS2, the hardness curve of the composite coating decreases and the trend accelerates. Under the same experimental conditions, the mass loss of plasma spray composite coating without adding MoS2 iS 1.27×10^-2 mg. When the amount of MoS2 reaches 35%, the mass loss is 0.96×10^-2 mg. It can be seen that adding MoS2 phase can improve the wear resistance, the amplitude of which is close to 30%. The friction coefficient of plasma spray composite coating without adding MoS2 is 0.23. Adding MoSz could decrease the friction coefficient of the coating and presents a downtrend. When the mass fraction is 35%, the friction coefficient is the smallest (0.13), and the range is doubled.
文摘Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: radiation source, brightness temperature, radiation lifetime, polarized radiation, radiation mechanism, and character of superposition are affirmed.
文摘According to the time-resolved spectra of lightning return stroke process and based on the plasma transmission theory,the evolution characteristics of the thermal conductivity and thermal diffusion coefficient of the discharge channel over time during the lightning return stroke are discussed.The radial distribution of the channel temperature in the lightning peak current phase is calculated,and the heat transfer along the radial direction of the channel is analyzed.The calculated transmission characteristic parameter values of the lightning discharge channel are all in a reasonable range.The results show that the heat transport coefficient of the lightning channel is closely related to the channel temperature and electron density.After returning to the peak current,the channel temperature slowly decreases,and the transport coefficient shows a non-linear and monotonous decay trend.The closer to the current core channel is,the greater the temperature gradient is,and the more the heat transferred radially outward is.
基金supported by the National Natural Science Foundation of China (Grant No. 607710003)
文摘The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-Tc radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time-frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.