Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in...Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper.The method implicitly describes structural material in- terfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure.In order to increase computational efficiency for a fast convergence,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints.Meanwhile,in order to overcome the numerical instability of general topology opti- mization problems,the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process.The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity,compared with other methods based on explicit boundary variations in the literature.展开更多
For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control alloc...For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control allocation problem for a multi-phase flight mission is studied.For an overall flight mission,different flight phases namely climbing,cruise,maneuver and gliding phases are defined.Firstly,a multi-objective control allocation problem considering drag,lift or control energy preference is constructed.Secondly,considering different control preferences at different flight phases,the analytic hierarchical process method is used to construct a comprehensive performance index from different objectives such as lift or drag preferences.The active set based dynamic programming optimization method is used to solve the real-time optimization problem.For the validation,the Innovative Control Effector(ICE)tailless aircraft nonlinear model and the angular acceleration measurements based adaptive Incremental Backstepping(IBKS)are used to construct the validation platform.Finally,an overall flight mission is simulated to demonstrate the efficiency of the proposed multi-phase and multi-objective flight control allocation method.The results show that the comprehensive performance index for different phases,which are determined from the Analytic Hierarchy Process(AHP)method,can suitably satisfy the preference requirements for different flight phases.展开更多
An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell...An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell performance is presented and discussed in detail. The model accounts for both gas and liquid phase in the same computational domain, and thus allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy, and water dissolved in the ion-conducting polymer. Water is assumed to be exchanged among three phases: liquid, vapottr, and dissolved, with equilibrium among these phases being assumed. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases, and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behaviour of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design, and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other s...A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.展开更多
The reentry trajectory optimization for hypersonic vehicle(HV)is a current problem of great interest.Some complex constraints,such as waypoints for reconnaissance and no-fly zones for threat avoidance,are inevitably...The reentry trajectory optimization for hypersonic vehicle(HV)is a current problem of great interest.Some complex constraints,such as waypoints for reconnaissance and no-fly zones for threat avoidance,are inevitably involved in a global strike mission.Of the many direct methods,Gauss pseudospectral method(GPM)has been demonstrated as an effective tool to solve the trajectory optimization problem with typical constraints.However,a series of diffculties arises for complex constraints,such as the uncertainty of passage time for waypoints and the inaccuracy of approximate trajectory near no-fly zones.The research herein proposes a multi-phase technique based on the GPM to generate an optimal reentry trajectory for HV satisfying waypoint and nofly zone constraints.Three kinds of specifc breaks are introduced to divide the full trajectory into multiple phases.The continuity conditions are presented to ensure a smooth connection between each pair of phases.Numerical examples for reentry trajectory optimization in free-space flight and with complex constraints are used to demonstrate the proposed technique.Simulation results show the feasible application of multi-phase technique in reentry trajectory optimization with waypoint and no-fly zone constraints.展开更多
A method for deformation of 3D point clouds models was proposed with multi-constraints including arc-length constraints and multi-points position constraints. The energy function was built for the polyline which had b...A method for deformation of 3D point clouds models was proposed with multi-constraints including arc-length constraints and multi-points position constraints. The energy function was built for the polyline which had been converted from the curve. Based on the minimum energy curve method, the curve on the mesh was deformed. The test results show that the proposed method has good performance. Compared with the other method,shape preserving of the curve is better. Finally,this method is used for the deformation of the 3D mannequin model. Circumference changes of the mannequin model can be reflected by the arc-length change in the size of the cross section.展开更多
Both the design process and form of the three-dimensional (3D) suboptimal guidance law (3DSGL) are very complex. Therefore, we propose the use of two-dimensional (2D) guidance laws to meet the guidance requireme...Both the design process and form of the three-dimensional (3D) suboptimal guidance law (3DSGL) are very complex. Therefore, we propose the use of two-dimensional (2D) guidance laws to meet the guidance requirements of 3D space. By analyzing the relationship between the flight-path angle and its projections on OXY and OXZ planes, we obtain the ideal design requirements of the guidance laws. Based on the requirements, we design a 2D suboptimal guidance law used in the horizontal plane; combining the 2D vertical suboptimal guidance law, we create a whole ballistic simulation of six degree-of-freedom. The results are compared with those using other three guidance modes in the case of large windage of the initial azimuth angle. When the proportional navigation guidance (PNG) law is used in the horizontal planes, the landing angle will obviously decrease. With the proposed guidance mode, the large landing angle can be realized and meet the guidance precision requirements. Moreover, the required overload can decrease to meet the control requirement. The effects of the proposed guidance mode are close to that of 3DSGL despite its very simple form.展开更多
In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous env...In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow efficiency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model.展开更多
基金The project supported by the National Natural Science Foundation of China (59805001,10332010) and Key Science and Technology Research Project of Ministry of Education of China (No.104060)
文摘Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper.The method implicitly describes structural material in- terfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure.In order to increase computational efficiency for a fast convergence,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints.Meanwhile,in order to overcome the numerical instability of general topology opti- mization problems,the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process.The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity,compared with other methods based on explicit boundary variations in the literature.
基金co-supported by the National Natural Science Foundation of China(No.11502008)Aeronautical Science Foundation of China(Nos.2017ZA51002,20185702003)the Fundamental Research Funds for the Central Universities of China(No.YWF-19-BJ-J-280)。
文摘For different flight phases in an overall flight mission,different control and allocation preferences should be pursued considering lift,drag or maneuverability characteristics.The multi-objective flight control allocation problem for a multi-phase flight mission is studied.For an overall flight mission,different flight phases namely climbing,cruise,maneuver and gliding phases are defined.Firstly,a multi-objective control allocation problem considering drag,lift or control energy preference is constructed.Secondly,considering different control preferences at different flight phases,the analytic hierarchical process method is used to construct a comprehensive performance index from different objectives such as lift or drag preferences.The active set based dynamic programming optimization method is used to solve the real-time optimization problem.For the validation,the Innovative Control Effector(ICE)tailless aircraft nonlinear model and the angular acceleration measurements based adaptive Incremental Backstepping(IBKS)are used to construct the validation platform.Finally,an overall flight mission is simulated to demonstrate the efficiency of the proposed multi-phase and multi-objective flight control allocation method.The results show that the comprehensive performance index for different phases,which are determined from the Analytic Hierarchy Process(AHP)method,can suitably satisfy the preference requirements for different flight phases.
基金Project supported by the Postgraduate Programs of the International Technological University (ITU), London, UK
文摘An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell performance is presented and discussed in detail. The model accounts for both gas and liquid phase in the same computational domain, and thus allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy, and water dissolved in the ion-conducting polymer. Water is assumed to be exchanged among three phases: liquid, vapottr, and dissolved, with equilibrium among these phases being assumed. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases, and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behaviour of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design, and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
基金China Postdoctoral Science Foundation(No.2004035208)Jiangsu Communication Science Foundation (No.06Y36)
文摘A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.
基金supported by Aviation Science Foundation of China(No.2011ZC13001 and 2013ZA18001)National Natural Science Foundation of China(Nos:60975073,61273349,61175109 and 61203223)Innovation Foundation of BUAA for PhD Graduates
文摘The reentry trajectory optimization for hypersonic vehicle(HV)is a current problem of great interest.Some complex constraints,such as waypoints for reconnaissance and no-fly zones for threat avoidance,are inevitably involved in a global strike mission.Of the many direct methods,Gauss pseudospectral method(GPM)has been demonstrated as an effective tool to solve the trajectory optimization problem with typical constraints.However,a series of diffculties arises for complex constraints,such as the uncertainty of passage time for waypoints and the inaccuracy of approximate trajectory near no-fly zones.The research herein proposes a multi-phase technique based on the GPM to generate an optimal reentry trajectory for HV satisfying waypoint and nofly zone constraints.Three kinds of specifc breaks are introduced to divide the full trajectory into multiple phases.The continuity conditions are presented to ensure a smooth connection between each pair of phases.Numerical examples for reentry trajectory optimization in free-space flight and with complex constraints are used to demonstrate the proposed technique.Simulation results show the feasible application of multi-phase technique in reentry trajectory optimization with waypoint and no-fly zone constraints.
基金the Key Project of the National Nature Science Foundation of China(No.61134009)Program for Changjiang Scholars and Innovation Research Team in University from the Ministry of Education,China(No.IRT1220)+2 种基金Specialized Research Funds for Shanghai Leading Talents,Project of the Shanghai Committee of Science and Technology,China(Nos.13JC1400200,11JC1400200)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)the Fundamental Research Funds for the Central Universities,China(No.2232012A3-04)
文摘A method for deformation of 3D point clouds models was proposed with multi-constraints including arc-length constraints and multi-points position constraints. The energy function was built for the polyline which had been converted from the curve. Based on the minimum energy curve method, the curve on the mesh was deformed. The test results show that the proposed method has good performance. Compared with the other method,shape preserving of the curve is better. Finally,this method is used for the deformation of the 3D mannequin model. Circumference changes of the mannequin model can be reflected by the arc-length change in the size of the cross section.
基金National Natural Science Foundation of China (60904085) New Teachers’ Fund for Doctor Stations of Ministry of Education of China (200802881012)+1 种基金 Excellent Talent Project “Zijin Star” Foundation of Nanjing University of Science and Technology Foundation of National Defence Key Laboratory of Ballistics
文摘Both the design process and form of the three-dimensional (3D) suboptimal guidance law (3DSGL) are very complex. Therefore, we propose the use of two-dimensional (2D) guidance laws to meet the guidance requirements of 3D space. By analyzing the relationship between the flight-path angle and its projections on OXY and OXZ planes, we obtain the ideal design requirements of the guidance laws. Based on the requirements, we design a 2D suboptimal guidance law used in the horizontal plane; combining the 2D vertical suboptimal guidance law, we create a whole ballistic simulation of six degree-of-freedom. The results are compared with those using other three guidance modes in the case of large windage of the initial azimuth angle. When the proportional navigation guidance (PNG) law is used in the horizontal planes, the landing angle will obviously decrease. With the proposed guidance mode, the large landing angle can be realized and meet the guidance precision requirements. Moreover, the required overload can decrease to meet the control requirement. The effects of the proposed guidance mode are close to that of 3DSGL despite its very simple form.
基金supported in part by the National Natural Science Foundation of China under Grant 51979275the National Key Research and Development Program of China under Grant 2022YFD2001405+8 种基金the open fund of Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province under Grant 2023ZJZD2306the Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities,Ministry of Natural Resources,under Grant KFKT-2022-05in part by Shenzhen Science and Technology Program(grant number ZDSYS20210623091808026)the Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,under Grant VRLAB2022C10in part by the open fund project of State Key Laboratory of Clean Energy Utilization under Grant ZJUCEU2022002the open fund of Key Laboratory of Smart Agricultural Technology(Yangtze River Delta),Ministry of Agriculture and Rural Affairs,under Grant KSAT-YRD2023005the Open Project Program of Key Laboratory of Smart Agricultural Technology in Tropical South China,Ministry of Agriculture and Rural Affairs,under Grant HNZHNYKFKT-202202the Higher Education Scientific Research Planning Project,China Association of Higher Education,under Grant 23XXK0304the 2115 Talent Development Program of China Agricultural University.Ben Ma received the master's degree in mechatronics engineering at the College of Engineering,China Agricultural University,Beijing,China,in 2021.
文摘In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow efficiency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model.