With the booming development of terrestrial network, scaling terrestrial network over satellite network to build Integrated Terrestrial-Satellite Network(ITSN) and meanwhile to provide the global Internet access, has ...With the booming development of terrestrial network, scaling terrestrial network over satellite network to build Integrated Terrestrial-Satellite Network(ITSN) and meanwhile to provide the global Internet access, has become ever more attractive. Naturally, the widely and successfully used terrestrial routing protocols are the promising protocols to integrate the terrestrial and satellite networks. However, the terrestrial routing protocols, which rely on propagating routing messages to discover New Network Topology(NNT) in the terrestrial network with rare topology changes, will suffer from overly numerous routing messages in satellite network whose topology frequently changes as satellites move. In this paper, a Topology Discovery Sub-layer for ITSN Routing Schemes(TDS-IRS) is firstly proposed to avoid the propagation of numerous routing messages by taking advantage of the movement predictability of satellite and the requirements of routing schemes to discover NNT in advance of topology change. Secondly, a Weighted Perfect Matching based Topology Discovery(WPM-TD) model is designed to conduct the NNT discovery on the ground. Thirdly, this paper builds a testbed with real network devices and meanwhile interconnect that testbed with real Internet, to validate that RS-TDS can discover NNT immediately with the less on-board overhead compared with optimized routing schemes. Finally, different network scenarios are applied to validate the WPM-TD, i.e., the core module of TDS-IRS. Extensive experiments show WPM-TD can work efficiently, avoiding the invalid NNT discovery and decreasing 20% ~ 57% of potential topology changes, which can also improve up to 47% ~ 105% of network throughput.展开更多
Recently,Non-Terrestrial Satellite Networks(NTSTs)have gained more and more attentions due to global coverage,low latency,and high-speed communications.The routing scheme is one of the primary challenges for NTSNs,due...Recently,Non-Terrestrial Satellite Networks(NTSTs)have gained more and more attentions due to global coverage,low latency,and high-speed communications.The routing scheme is one of the primary challenges for NTSNs,due to the mega scale of an NTSN constellation and the dynamic topology feature.To solve many pressing problems,a Compass time-space Model-based Virtual IP(CMVIP)routing scheme is proposed in this paper.In order to compensate for discontinuities in existing topology models,a compass-shaped time-space model is proposed.It can be adapted with Inter-Satellite-Link(ISL)and Ground-Satellite-Link(GSL)transmissions.A distributed algorithm with multiple optimization objectives and multiple constraints is applied for routing path discovery.To more realistically verify the specific scheme,a traffic model that supports two different services is proposed.Access and bearer services are the two main applications of an NTSN.Experimental results demonstrate that the proposed scheme achieves superior Qualityof-Service(QoS)performance.In addition,comparison results demonstrate that the CMVIP routing scheme is superior to the Virtual-Topology-based Shortest Path(VT-SP)routing algorithm.展开更多
Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even wh...Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even when a proper node is selected as the for- warding node. In this paper, we propose a loss-tolerant scheme for unicast routing protocols in VANETs. The proposed scheme employs multiple forwarding nodes to improve the packet reception ratio at the forwarding nodes. The scheme uses network coding to reduce the number of required transmissions, resulting in a significant improvement in end-to-end packet delivery ratio with low message overhead. The effectiveness of the proposed scheme is evaluated by using both theoretical analysis and computer sim-展开更多
Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN ...Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN is no exception.ICN network would be divided into core domain and many edge domains as today's internet does.HHR(Hierarchy Hybrid Routing scheme) is presented for ICN:A Chord-like routing scheme is used in core domain,while edge domains routing structure can be classified into three categories,Local Routing(LR),Delivery of Local Publication to Core domain(DLPC),and Remote Publication Routing into edge domain(RPR).LR can be decided by each edge domain,which determined by many factors,such as locality characteristic for pub/sub information and local policies.A hierarchical routing algorithm is proposed to solve DLPC and RPR simultaneously.Simulation results demonstrate that HHR can be fast deployed,and can be applied in large scale network or dynamic subscription environment.展开更多
We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-expl...We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-explicit Runge-Kutta method for time integration. The resulting method retains the simplicity of the relaxation schemes. There is no need to involve Riemann solvers and characteristic decomposition. Even the computation of the eigenvalues is not required. This makes the scheme particularly well suited for the MCLWR model in which the analytical expressions of the eigenvalues are difficult to obtain for more than four classes of road users. The numerical results illustrate the effectiveness of the presented method.展开更多
Adaptive clustering hierarchy routing(ACHR) establishes a clusters-based hierarchical hybrid routing algorithm with two-hop local visibility for delay tolerant network(DTN).The major contribution of ACHR is the combin...Adaptive clustering hierarchy routing(ACHR) establishes a clusters-based hierarchical hybrid routing algorithm with two-hop local visibility for delay tolerant network(DTN).The major contribution of ACHR is the combination of single copy scheme and multi-copy scheme and the combination of hop-by-hop and multi-hop mechanism ACHR,which has the advantages in simplicity,availability and well-expansibility.The result shows that it can take advantage of the random communication opportunities and local network connectivity,and achieves 1.6 times delivery ratio and 60% overhead compared with its counterpart.展开更多
Frequent inter-satellite link(ISL)handovers will induce service interruption in large-scale space information networks,since traditional distributed/centralized routing strategy-based route convergence/update will con...Frequent inter-satellite link(ISL)handovers will induce service interruption in large-scale space information networks,since traditional distributed/centralized routing strategy-based route convergence/update will consume considerable time(compared with ground networks)derived from long ISL delay and flooding between hundreds or even thousands of satellites.During the network convergence/update stage,the lack of up-to-date forwarding information may cause severe packet loss.Considering the fact that ISL handovers for close-to-earth constellation are predictable and all the ISL handover information could be stored in each satellite during the network initialization,we propose a self-update routing scheme based on open shortest path first(OSPF-SUR)to address the slow route convergence problem caused by frequent ISL handovers.First,for predictable ISL handovers,forwarding tables are updated according to locally stored ISL handover information without link state advertisement(LSA)flooding.Second,for unexpected ISL failures,flooding could be triggered to complete route convergence.In this manner,network convergence time is radically descended by avoiding unnecessary LSA flooding for predictable ISL handovers.Simulation results show that the average packet loss rate caused by ISL handovers is reduced by 90.5%and 61.3%compared with standard OSPF(with three Hello packets confirmation)and OSPF based on interface state(without three Hello packets confirmation),respectively,during a period of topology handover.And the average endto-end delay is also decreased by 47.6%,9.6%,respectively.The packet loss rate of the proposed OSPF-SUR does not change along with the increase of the frequency of topology handovers.展开更多
This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of ...This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of SNWT's middle route project. Some benefits were calculated in monetary units. To make sure that the results can be comparable with normal monetary indices, concrete assessment objects and the parameters are prudently selected according to the major characteristics of the project and its water import region. Primary assessment revealed that in different project construction stages, the benefit could be more than 13 07 billion RMB Yuan in 2010 and 19 79 billion RMB Yuan in 2030, respectively. The monetary value tends to increase with social-economic development. To realize these potential benefits, however, calls for more endeavors.展开更多
The nodes in the sensor network have a wide range of uses,particularly on under-sea links that are skilled for detecting,handling as well as management.The underwater wireless sensor networks support collecting pollut...The nodes in the sensor network have a wide range of uses,particularly on under-sea links that are skilled for detecting,handling as well as management.The underwater wireless sensor networks support collecting pollution data,mine survey,oceanographic information collection,aided navigation,strategic surveillance,and collection of ocean samples using detectors that are submerged inwater.Localization,congestion routing,and prioritizing the traffic is the major issue in an underwater sensor network.Our scheme differentiates the different types of traffic and gives every type of traffic its requirements which is considered regarding network resource.Minimization of localization error using the proposed angle-based forwarding scheme is explained in this paper.We choose the shortest path to the destination using the fitness function which is calculated based on fault ratio,dispatching of packets,power,and distance among the nodes.This work contemplates congestion conscious forwarding using hard stage and soft stage schemes which reduce the congestion by monitoring the status of the energy and buffer of the nodes and controlling the traffic.The study with the use of the ns3 simulator demonstrated that a given algorithm accomplishes superior performance for loss of packet,delay of latency,and power utilization than the existing algorithms.展开更多
Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
A Trunk Line Based Geographic Routing(TLBGR)protocol in Vehicular Ad-hoc Networks(VANETs)is proposed in this paper to solve the problem of data acquisition in the traditional trunk coordinated control system.Because o...A Trunk Line Based Geographic Routing(TLBGR)protocol in Vehicular Ad-hoc Networks(VANETs)is proposed in this paper to solve the problem of data acquisition in the traditional trunk coordinated control system.Because of the characteristics of short communication time and high packet loss among vehicles,the vehicles entering the trunk lines can not transmit their information to the trunk coordinated control system stably.To resolve this problem,the proposed protocol uses the trunk lines’traffic flow and the surrounding road network to provide a real-time data transmission routing scheme.It takes into account the data congestion problem caused by the large traffic flow of the main roads,which leads to the corresponding increase of the information flow of the section and the package loss,and the link partition problem caused by the insufficient traffic flow,which makes the vehicles have to carry and relay information thus increasing the transmission delay.The proposed TLBGR protocol can be divided into two stages:the next-intersection selection,and the next-hop selection in the chosen path between the current and next intersections.Simulation results show that,compared with other IoT routing protocols including Greedy Perimeter Stateless Routing(GPSR),Ad-hoc On Demand Vector(AODV),and Q-AODV,the TLBGR protocol has better performance in aspects of end-to-end delay,delivery rate,and routing cost under the scenario of urban traffic trunk lines.The TLBGR protocol can effectively avoid data congestion and local optimum problems,increase the delivery rate of data packets,and is therefore suitable for the routing requirements in this application scenario.展开更多
The current geographic routing protocols arise data congestion if a multi-flow bypasses a hole simultaneously and excessive energy consumption of hole boundary nodes because these protocols tend to route data packets ...The current geographic routing protocols arise data congestion if a multi-flow bypasses a hole simultaneously and excessive energy consumption of hole boundary nodes because these protocols tend to route data packets along the boundaries of void areas (holes) by perimeter routing scheme.This scheme possibly enlarges the holes phenomenon (called hole diffusion problem) and shortens the life span of the network. A novel geographical routing algorithm based on a potential field approach (PFA) is proposed to deal with multiple holes scenario and restrict data to forward near boundary of a hole. That is, data packets are attracted to its sink and are repulsed away from the hole (s). Simulation results show that PFA is superior to other protocols in terms of packet delivery ratio, network lifetime.展开更多
In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In...In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In tactical Mobile Ad-hoc Network(MANET),hubs can function based on the work plan in various social affairs and the internally connected hubs are almost having the related moving standards where the topology between one and the other are tightly coupled in steady support by considering the touchstone of hubs such as a self-sorted out,self-mending and self-administration.Clustering in the routing process is one of the key aspects to increase MANET performance by coordinat-ing the pathways using multiple criteria and analytics.We present a Group Adaptive Hybrid Routing Algorithm(GAHRA)for gathering portability,which pursues table-driven directing methodology in stable accumulations and on-request steering strategy for versatile situations.Based on this aspect,the research demonstrates an adjustable framework for commuting between the table-driven approach and the on-request approach,with the objectives of enhancing the out-put of MANET routing computation in each hub.Simulation analysis and replication results reveal that the proposed method is promising than a single well-known existing routing approach and is well-suited for sensitive MANET applications.展开更多
This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at ...This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.展开更多
It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin ...It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.展开更多
The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to t...The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.展开更多
This paper proposes a new queuing model and adaptive scheduling scheme which realizes multi-class QoS mechanism under DiffServ architecture. The queuing model is composed of two parallel output subqueues, each output ...This paper proposes a new queuing model and adaptive scheduling scheme which realizes multi-class QoS mechanism under DiffServ architecture. The queuing model is composed of two parallel output subqueues, each output sub-queue adopts random drop algorithm by setting different buffer threshold for different class traffic, so it can provide multi-class QoS. The new proposed scheduling scheme which adaptively changes the parameter A can guarantee the performance target of high class traffic, in the mean time, improve the QoS of low classes traffic.展开更多
基金supported by State Key Program of National Natural Science of China (91738202)Science &Technology Program of Beijing (Z171100005217001)
文摘With the booming development of terrestrial network, scaling terrestrial network over satellite network to build Integrated Terrestrial-Satellite Network(ITSN) and meanwhile to provide the global Internet access, has become ever more attractive. Naturally, the widely and successfully used terrestrial routing protocols are the promising protocols to integrate the terrestrial and satellite networks. However, the terrestrial routing protocols, which rely on propagating routing messages to discover New Network Topology(NNT) in the terrestrial network with rare topology changes, will suffer from overly numerous routing messages in satellite network whose topology frequently changes as satellites move. In this paper, a Topology Discovery Sub-layer for ITSN Routing Schemes(TDS-IRS) is firstly proposed to avoid the propagation of numerous routing messages by taking advantage of the movement predictability of satellite and the requirements of routing schemes to discover NNT in advance of topology change. Secondly, a Weighted Perfect Matching based Topology Discovery(WPM-TD) model is designed to conduct the NNT discovery on the ground. Thirdly, this paper builds a testbed with real network devices and meanwhile interconnect that testbed with real Internet, to validate that RS-TDS can discover NNT immediately with the less on-board overhead compared with optimized routing schemes. Finally, different network scenarios are applied to validate the WPM-TD, i.e., the core module of TDS-IRS. Extensive experiments show WPM-TD can work efficiently, avoiding the invalid NNT discovery and decreasing 20% ~ 57% of potential topology changes, which can also improve up to 47% ~ 105% of network throughput.
基金This research was funded by the China State Key Laboratory of Robotics(No.19Z1240010018)the office of the Military and Civilian Integration Development Committee of Shanghai,China(No.2019-jmrh1-kj3).
文摘Recently,Non-Terrestrial Satellite Networks(NTSTs)have gained more and more attentions due to global coverage,low latency,and high-speed communications.The routing scheme is one of the primary challenges for NTSNs,due to the mega scale of an NTSN constellation and the dynamic topology feature.To solve many pressing problems,a Compass time-space Model-based Virtual IP(CMVIP)routing scheme is proposed in this paper.In order to compensate for discontinuities in existing topology models,a compass-shaped time-space model is proposed.It can be adapted with Inter-Satellite-Link(ISL)and Ground-Satellite-Link(GSL)transmissions.A distributed algorithm with multiple optimization objectives and multiple constraints is applied for routing path discovery.To more realistically verify the specific scheme,a traffic model that supports two different services is proposed.Access and bearer services are the two main applications of an NTSN.Experimental results demonstrate that the proposed scheme achieves superior Qualityof-Service(QoS)performance.In addition,comparison results demonstrate that the CMVIP routing scheme is superior to the Virtual-Topology-based Shortest Path(VT-SP)routing algorithm.
基金supported in part by JSPS KAKENHI under Grant Number25730053
文摘Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even when a proper node is selected as the for- warding node. In this paper, we propose a loss-tolerant scheme for unicast routing protocols in VANETs. The proposed scheme employs multiple forwarding nodes to improve the packet reception ratio at the forwarding nodes. The scheme uses network coding to reduce the number of required transmissions, resulting in a significant improvement in end-to-end packet delivery ratio with low message overhead. The effectiveness of the proposed scheme is evaluated by using both theoretical analysis and computer sim-
基金supported by 973 Program(2013CB329103)NSFC Fund (61271165,61301153)Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in University and the 111 Project B14039
文摘Publish/subscribe(pub/sub) paradigm is the main communication model for Information-Centric Network(ICN) proposals.A key issue for pub/sub system is how to route the content objects to the correct subscribers,and ICN is no exception.ICN network would be divided into core domain and many edge domains as today's internet does.HHR(Hierarchy Hybrid Routing scheme) is presented for ICN:A Chord-like routing scheme is used in core domain,while edge domains routing structure can be classified into three categories,Local Routing(LR),Delivery of Local Publication to Core domain(DLPC),and Remote Publication Routing into edge domain(RPR).LR can be decided by each edge domain,which determined by many factors,such as locality characteristic for pub/sub information and local policies.A hierarchical routing algorithm is proposed to solve DLPC and RPR simultaneously.Simulation results demonstrate that HHR can be fast deployed,and can be applied in large scale network or dynamic subscription environment.
基金Project supported by the Aoxiang Project and the Scientific and Technological Innovation Foundation of Northwestern Polytechnical University, China (No 2007KJ01011)
文摘We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-explicit Runge-Kutta method for time integration. The resulting method retains the simplicity of the relaxation schemes. There is no need to involve Riemann solvers and characteristic decomposition. Even the computation of the eigenvalues is not required. This makes the scheme particularly well suited for the MCLWR model in which the analytical expressions of the eigenvalues are difficult to obtain for more than four classes of road users. The numerical results illustrate the effectiveness of the presented method.
基金Project(531107040202) supported by the Fundamental Research Funds for the Central Universities of China
文摘Adaptive clustering hierarchy routing(ACHR) establishes a clusters-based hierarchical hybrid routing algorithm with two-hop local visibility for delay tolerant network(DTN).The major contribution of ACHR is the combination of single copy scheme and multi-copy scheme and the combination of hop-by-hop and multi-hop mechanism ACHR,which has the advantages in simplicity,availability and well-expansibility.The result shows that it can take advantage of the random communication opportunities and local network connectivity,and achieves 1.6 times delivery ratio and 60% overhead compared with its counterpart.
基金the National Natural Science Foundations of China(Nos.61771074,62171059)。
文摘Frequent inter-satellite link(ISL)handovers will induce service interruption in large-scale space information networks,since traditional distributed/centralized routing strategy-based route convergence/update will consume considerable time(compared with ground networks)derived from long ISL delay and flooding between hundreds or even thousands of satellites.During the network convergence/update stage,the lack of up-to-date forwarding information may cause severe packet loss.Considering the fact that ISL handovers for close-to-earth constellation are predictable and all the ISL handover information could be stored in each satellite during the network initialization,we propose a self-update routing scheme based on open shortest path first(OSPF-SUR)to address the slow route convergence problem caused by frequent ISL handovers.First,for predictable ISL handovers,forwarding tables are updated according to locally stored ISL handover information without link state advertisement(LSA)flooding.Second,for unexpected ISL failures,flooding could be triggered to complete route convergence.In this manner,network convergence time is radically descended by avoiding unnecessary LSA flooding for predictable ISL handovers.Simulation results show that the average packet loss rate caused by ISL handovers is reduced by 90.5%and 61.3%compared with standard OSPF(with three Hello packets confirmation)and OSPF based on interface state(without three Hello packets confirmation),respectively,during a period of topology handover.And the average endto-end delay is also decreased by 47.6%,9.6%,respectively.The packet loss rate of the proposed OSPF-SUR does not change along with the increase of the frequency of topology handovers.
文摘This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of SNWT's middle route project. Some benefits were calculated in monetary units. To make sure that the results can be comparable with normal monetary indices, concrete assessment objects and the parameters are prudently selected according to the major characteristics of the project and its water import region. Primary assessment revealed that in different project construction stages, the benefit could be more than 13 07 billion RMB Yuan in 2010 and 19 79 billion RMB Yuan in 2030, respectively. The monetary value tends to increase with social-economic development. To realize these potential benefits, however, calls for more endeavors.
文摘The nodes in the sensor network have a wide range of uses,particularly on under-sea links that are skilled for detecting,handling as well as management.The underwater wireless sensor networks support collecting pollution data,mine survey,oceanographic information collection,aided navigation,strategic surveillance,and collection of ocean samples using detectors that are submerged inwater.Localization,congestion routing,and prioritizing the traffic is the major issue in an underwater sensor network.Our scheme differentiates the different types of traffic and gives every type of traffic its requirements which is considered regarding network resource.Minimization of localization error using the proposed angle-based forwarding scheme is explained in this paper.We choose the shortest path to the destination using the fitness function which is calculated based on fault ratio,dispatching of packets,power,and distance among the nodes.This work contemplates congestion conscious forwarding using hard stage and soft stage schemes which reduce the congestion by monitoring the status of the energy and buffer of the nodes and controlling the traffic.The study with the use of the ns3 simulator demonstrated that a given algorithm accomplishes superior performance for loss of packet,delay of latency,and power utilization than the existing algorithms.
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.
基金supported by the National Key Research and Development Program of China(2018YFE0126000)the National Natural Science Foundation of China(62072360,61902292,62001357,62072359,62072355)+3 种基金the key research and development plan of Shaanxi province(2021ZDLGY02-09,2019ZDLGY13-07,2019ZDLGY13-04,2020JQ-844)the key laboratory of embedded system and service computing(Tongji University)(ESSCKF2019-05)Ministry of Education,the Xi'an Science and Technology Plan(20RGZN0005)the Xi'an Key Laboratory of Mobile Edge Computing and Security(201805052-ZD3CG36).
文摘A Trunk Line Based Geographic Routing(TLBGR)protocol in Vehicular Ad-hoc Networks(VANETs)is proposed in this paper to solve the problem of data acquisition in the traditional trunk coordinated control system.Because of the characteristics of short communication time and high packet loss among vehicles,the vehicles entering the trunk lines can not transmit their information to the trunk coordinated control system stably.To resolve this problem,the proposed protocol uses the trunk lines’traffic flow and the surrounding road network to provide a real-time data transmission routing scheme.It takes into account the data congestion problem caused by the large traffic flow of the main roads,which leads to the corresponding increase of the information flow of the section and the package loss,and the link partition problem caused by the insufficient traffic flow,which makes the vehicles have to carry and relay information thus increasing the transmission delay.The proposed TLBGR protocol can be divided into two stages:the next-intersection selection,and the next-hop selection in the chosen path between the current and next intersections.Simulation results show that,compared with other IoT routing protocols including Greedy Perimeter Stateless Routing(GPSR),Ad-hoc On Demand Vector(AODV),and Q-AODV,the TLBGR protocol has better performance in aspects of end-to-end delay,delivery rate,and routing cost under the scenario of urban traffic trunk lines.The TLBGR protocol can effectively avoid data congestion and local optimum problems,increase the delivery rate of data packets,and is therefore suitable for the routing requirements in this application scenario.
文摘The current geographic routing protocols arise data congestion if a multi-flow bypasses a hole simultaneously and excessive energy consumption of hole boundary nodes because these protocols tend to route data packets along the boundaries of void areas (holes) by perimeter routing scheme.This scheme possibly enlarges the holes phenomenon (called hole diffusion problem) and shortens the life span of the network. A novel geographical routing algorithm based on a potential field approach (PFA) is proposed to deal with multiple holes scenario and restrict data to forward near boundary of a hole. That is, data packets are attracted to its sink and are repulsed away from the hole (s). Simulation results show that PFA is superior to other protocols in terms of packet delivery ratio, network lifetime.
文摘In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In tactical Mobile Ad-hoc Network(MANET),hubs can function based on the work plan in various social affairs and the internally connected hubs are almost having the related moving standards where the topology between one and the other are tightly coupled in steady support by considering the touchstone of hubs such as a self-sorted out,self-mending and self-administration.Clustering in the routing process is one of the key aspects to increase MANET performance by coordinat-ing the pathways using multiple criteria and analytics.We present a Group Adaptive Hybrid Routing Algorithm(GAHRA)for gathering portability,which pursues table-driven directing methodology in stable accumulations and on-request steering strategy for versatile situations.Based on this aspect,the research demonstrates an adjustable framework for commuting between the table-driven approach and the on-request approach,with the objectives of enhancing the out-put of MANET routing computation in each hub.Simulation analysis and replication results reveal that the proposed method is promising than a single well-known existing routing approach and is well-suited for sensitive MANET applications.
文摘This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.
文摘It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.
基金Supported by Natural Science Foundation of Tianjin (No.09JCYBJC08700)the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No.51021004)National Natural Science Foundation of China (No.90815019)
文摘The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.
文摘This paper proposes a new queuing model and adaptive scheduling scheme which realizes multi-class QoS mechanism under DiffServ architecture. The queuing model is composed of two parallel output subqueues, each output sub-queue adopts random drop algorithm by setting different buffer threshold for different class traffic, so it can provide multi-class QoS. The new proposed scheduling scheme which adaptively changes the parameter A can guarantee the performance target of high class traffic, in the mean time, improve the QoS of low classes traffic.