期刊文献+
共找到5,046篇文章
< 1 2 250 >
每页显示 20 50 100
Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning
1
作者 Misbah Anwer Ghufran Ahmed +3 位作者 Maha Abdelhaq Raed Alsaqour Shahid Hussain Adnan Akhunzada 《Computers, Materials & Continua》 2026年第1期744-758,共15页
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an... The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security. 展开更多
关键词 Cyber-attack intrusion detection system(IDS) deep federated learning(DFL) zero-day attack distributed denial of services(DDoS) multi-class Internet of Things(IoT)
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
2
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
Equilibrium Strategies in M/M/1 Retrial Queues with Variable Service Rate
3
作者 LIU Yuanyuan YAN Zhaozeng YANG Qin 《应用概率统计》 北大核心 2025年第3期448-466,共19页
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen... We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples. 展开更多
关键词 variable service rate retrial queues real-time adaptability equilibrium strategies ALGORITHM
在线阅读 下载PDF
Stochastic interpretation for a single server retrial queue with Bernoulli feedback and negative customers
4
作者 Mohamed Boualem Amina Angelika Bouchentouf +1 位作者 Aicha Bareche Mouloud Cherfaoui 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期1-19,共19页
In this paper,we introduce a qualitative analysis in order to study the monotonicity and comparability properties of a single-server retrial queueing model with Bernoulli feedback and negative customers,relative to st... In this paper,we introduce a qualitative analysis in order to study the monotonicity and comparability properties of a single-server retrial queueing model with Bernoulli feedback and negative customers,relative to stochastic orderings.Performance measures of such a system are available explicitly,while their forms are cumbersome(these formulas include integrals of Laplace transform,solutions of functional equations,etc.).Therefore,they are not exploitable from the application point of view.To overcome these difficulties,we present stochastic comparison methods in order to get qualitative estimates of these measures.In particular,we prove the monotonicity of the transition operator of the embedded Markov chain.In addition,we establish conditions for which transition operators as well as stationary probabilities,associated with two embedded Markov chains,having the same structure but with different parameters,are comparable relative to the given stochastic orderings.Further,numerical examples are carried out to illustrate the theoretical results. 展开更多
关键词 retrial queueing models negative arrivals stochastic orderings MONOTONICITY SIMULATION
在线阅读 下载PDF
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
5
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning TF-IDF Word2Vec social media analysis transformer models
在线阅读 下载PDF
A YOLOv11-Based Deep Learning Framework for Multi-Class Human Action Recognition
6
作者 Nayeemul Islam Nayeem Shirin Mahbuba +4 位作者 Sanjida Islam Disha Md Rifat Hossain Buiyan Shakila Rahman M.Abdullah-Al-Wadud Jia Uddin 《Computers, Materials & Continua》 2025年第10期1541-1557,共17页
Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only... Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments. 展开更多
关键词 Human activity recognition YOLOv11 deep learning real-time detection anchor-free detection attention mechanisms object detection image classification multi-class recognition surveillance applications
在线阅读 下载PDF
具有修正的Min(N,D)-策略和单重休假的Geo/G/1离散时间排队分析
7
作者 魏瑛源 余玅妙 唐玉玲 《应用数学》 北大核心 2026年第1期108-128,共21页
本文研究服务员具有单重休假和系统采用修正的Min(N,D)-策略的离散时间Geo/G/1排队系统,运用更新过程理论、全概率分解技术和z-变换工具,从任意初始状态开始,研究队长的瞬时性态和平稳性态,得到了任意时刻n^(+)处队长瞬态分布的z-变换... 本文研究服务员具有单重休假和系统采用修正的Min(N,D)-策略的离散时间Geo/G/1排队系统,运用更新过程理论、全概率分解技术和z-变换工具,从任意初始状态开始,研究队长的瞬时性态和平稳性态,得到了任意时刻n^(+)处队长瞬态分布的z-变换表达式和稳态分布的递推表达式,同时给出了不同时刻n^(-)、n、n^(+)和外部观测点处队长稳态分布之间的重要关系.进一步借助于数值实例,讨论了系统的空闲率与稳态平均队长关于系统参数的敏感性,并且阐述了便于作数值计算的队长稳态分布的递推公式在系统容量优化设计中的重要价值.最后,运用更新报酬过程定理,建立了费用结构模型,获得了系统长期运行下单位时间内所产生的期望费用的显示表达式,并通过数值算例,寻求使期望费用最小的最优控制策略(N^(*),D^(*)). 展开更多
关键词 离散时间排队 修正的Min(N D)-策略 单重休假 队长分布 系统容量优化设计 最优控制策略
在线阅读 下载PDF
带有异质信息顾客和差异化休假的排队系统最优策略
8
作者 田瑞玲 宋涛 +2 位作者 黄艳玲 王腾 陈小娟 《应用数学》 北大核心 2026年第1期198-208,共11页
本文研究了带有异质信息顾客和差异化休假的排队系统.当系统为空时,服务台开始休假,休假回来后如果系统中有顾客等待则进入忙期.否则服务台将进行多重休假直到某次休假回来系统中有顾客存在.到达顾客根据被告知信息程度的不同分为完全... 本文研究了带有异质信息顾客和差异化休假的排队系统.当系统为空时,服务台开始休假,休假回来后如果系统中有顾客等待则进入忙期.否则服务台将进行多重休假直到某次休假回来系统中有顾客存在.到达顾客根据被告知信息程度的不同分为完全告知顾客和完全不告知顾客.本文首先通过构建差分方程解平衡方程,获得系统稳态概率及性能指标.然后考虑顾客均衡和社会最优两种情况,对完全告知顾客求解阈值策略,对完全不告知顾客求解其混合加入策略.之后通过数值分析考察参数对顾客策略及社会收益的影响.本文考虑更复杂的现实,希望能丰富对排队问题的研究. 展开更多
关键词 异质信息 差异化休假 均衡策略 社会最优收益 排队
在线阅读 下载PDF
LabVIEW中Queue技术在发电机监测系统中的应用 被引量:3
9
作者 王会咪 刘志峰 +2 位作者 李雪丽 李富平 杨文通 《微计算机信息》 北大核心 2006年第03S期136-138,共3页
介绍了基于虚拟仪器的在线监测系统的基本组成,其采用PCI总线仪器和LabVIEW可视化的虚拟仪器系统开发平台,把传统仪器的所有功能模块集成在一台计算机中,用户可以通过修改虚拟仪器的软件改变其功能与规模。该系统有效地利用了LabVIEW提... 介绍了基于虚拟仪器的在线监测系统的基本组成,其采用PCI总线仪器和LabVIEW可视化的虚拟仪器系统开发平台,把传统仪器的所有功能模块集成在一台计算机中,用户可以通过修改虚拟仪器的软件改变其功能与规模。该系统有效地利用了LabVIEW提供的同步控制Queue技术实现了发电机在现场运行环境下运行状态的监测显示,体现出了其一定的优势。 展开更多
关键词 LABVIEW queue技术 发电机 在线监测
在线阅读 下载PDF
基于Message Queue技术的医疗信息交换与共享集成平台研究 被引量:4
10
作者 覃永胜 林崇健 《中国数字医学》 2010年第8期105-107,共3页
对目前医院信息系统集成方式进行了分析,简单介绍了IBM Message Queue的技术特点,通过介绍重症监护系统(ICU系统)和HIS系统之间的集成方案,阐述了基于消息机制构建医疗信息交换与共享集成平台的思路和方法。
关键词 MESSAGE queue 医院信息系统 集成平台
暂未订购
FastQueue:一种高性能的磁盘队列存储管理机制 被引量:1
11
作者 魏青松 卢显良 周旭 《计算机科学》 CSCD 北大核心 2003年第10期81-83,88,共4页
1.引言 随着消息通信(如消息、短消息)的爆炸式增长,消息传递系统的性能面临严峻的挑战.消息通信的首要特点是高可靠性,在发送人确认消息收到之前必须将消息保存到磁盘上.
关键词 磁盘队列存储管理机制 Fastqueue 磁盘带宽 文件系统 UNIX 操作系统
在线阅读 下载PDF
Time varying congestion pricing for multi-class and multi-mode transportation system with asymmetric cost functions
12
作者 钟绍鹏 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期77-82,共6页
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin... This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value. 展开更多
关键词 time varying congestion pricing ASYMMETRIC multi-class MULTI-MODE MULTI-CRITERIA
在线阅读 下载PDF
Active Queue Management技术的研究与发展
13
作者 王雅琳 王忠 +1 位作者 张洪渊 彭海清 《计算机工程与设计》 CSCD 2003年第12期1-5,88,共6页
Active Queue Management(AQM)技术通过有效控制输出队列的丢包时间和丢包方式,对拥塞进行早期通告,这在TCP拥塞控制的实现中至关重要。目前对AQM进行较全面介绍和总结的文献尚不多见,以RandomEarly Detection(RED)为重点介绍了这种第一... Active Queue Management(AQM)技术通过有效控制输出队列的丢包时间和丢包方式,对拥塞进行早期通告,这在TCP拥塞控制的实现中至关重要。目前对AQM进行较全面介绍和总结的文献尚不多见,以RandomEarly Detection(RED)为重点介绍了这种第一代AQM技术的设计思想、优缺点以及为此出现的多种RED变种方法,另外还简单介绍了其它几种与RED设计思路不同的AQM方法,以期对AQM技术的研究和发展进行较全面的总结,并促进国内学者以及设备制造商对这一技术的关注。 展开更多
关键词 INTERNET 网络性能 网络传输 拥塞控制机制 ActivequeueManagement技术
在线阅读 下载PDF
基于Virtual Output Queued交换结构的最大权重匹配算法
14
作者 鄂大伟 《计算机工程与应用》 CSCD 北大核心 2001年第18期66-69,共4页
信头阻塞(HOL)限制了采用FIFO输入队列交换机的吞吐率,而使用虚输出队列(VOQ)技术可以完全消除HOL阻塞。文章给出了VOQ的交换机模型,介绍了基于最大权重匹配的算法LQF、OCF、LPF及其性能,还描述了更加实用的并行迭代算法i-LQF、... 信头阻塞(HOL)限制了采用FIFO输入队列交换机的吞吐率,而使用虚输出队列(VOQ)技术可以完全消除HOL阻塞。文章给出了VOQ的交换机模型,介绍了基于最大权重匹配的算法LQF、OCF、LPF及其性能,还描述了更加实用的并行迭代算法i-LQF、i-OCF和i-LPF。文章的结论对于构造高带宽的交换机具有实际意义。 展开更多
关键词 FIFO队列 虚输出队列 最大权重匹配算法 B-ISDN ATM 交换机
在线阅读 下载PDF
万兆同轴宽带接入网HIMAC 3.0的拆帧重排序方法
15
作者 黄一明 潘伟涛 邱智亮 《电子科技》 2026年第1期25-31,共7页
高性能同轴电缆网络(High Performance Network Over Coax,HINOC)技术是一种光纤同轴混合接入技术,已发展至第3代。为了实现万兆以太网的接入速率,第3代HINOC引入了多信道绑定机制。但该机制在有效扩展HINOC网络信道带宽的同时易导致HIM... 高性能同轴电缆网络(High Performance Network Over Coax,HINOC)技术是一种光纤同轴混合接入技术,已发展至第3代。为了实现万兆以太网的接入速率,第3代HINOC引入了多信道绑定机制。但该机制在有效扩展HINOC网络信道带宽的同时易导致HIMAC(HINOC Medium Access Control)拆帧端接收的数据流失序。针对该问题,文中提出了一种拆帧重排序方法。通过重排序队列缓存管理、入队逻辑地址计算、超时判断及清空以及出队判断等关键技术的设计和实现来解决多信道绑定机制引起的拆帧乱序问题,并对其关键功能点进行仿真验证和板级验证。实验结果表明,所提方法能够有效处理多信道绑定导致的乱序问题,并且能够确保系统在遇到错误情况时稳定运行,具有较强的鲁棒性,满足万兆同轴宽带接入HIMAC 3.0的功能和性能要求。 展开更多
关键词 万兆同轴宽带接入 HIMAC 3.0 多信道绑定 数据帧乱序 拆帧 重排序 超时清空 队列缓存
在线阅读 下载PDF
带有工作休假的有限容量M/PH/1排队系统驱动的流模型性能分析
16
作者 叶晴晴 黄丽璇 刘津津 《应用数学》 北大核心 2026年第1期1-11,共11页
本文研究带有工作休假的有限容量M/PH/1排队系统驱动的流模型.对于该驱动系统,本文给出了可用矩阵几何组合解形式表示的稳态概率向量.对于流模型,推导了稳态联合概率分布函数所满足的微分方程,证明流模型的稳态联合概率分布函数的Laplac... 本文研究带有工作休假的有限容量M/PH/1排队系统驱动的流模型.对于该驱动系统,本文给出了可用矩阵几何组合解形式表示的稳态概率向量.对于流模型,推导了稳态联合概率分布函数所满足的微分方程,证明流模型的稳态联合概率分布函数的Laplace变换(简称LT)也可以表示为矩阵几何组合解形式.进一步,运用分解算法减少矩阵计算的复杂度,并给出了计算缓冲器平均库存量的计算算法.最后,通过数值实验分析系统参数对其性能指标的影响. 展开更多
关键词 流模型 工作休假 PH分布 矩阵几何解
在线阅读 下载PDF
基于IP Queue的实时网页过滤系统的设计与实现 被引量:1
17
作者 周聚 朱巧明 +1 位作者 李培峰 刘钊 《计算机应用与软件》 CSCD 2011年第2期205-207,234,共4页
在分析了IP Queue机制的实现技术、HTTP请求报文和响应报文,以及IP数据包的相关特征的基础上,实现了基于IP地址、URL的请求报文过滤以及基于关键词的响应报文过滤的实时网页过滤系统。该系统同时运行于一个具体的网关计费系统,提高了网... 在分析了IP Queue机制的实现技术、HTTP请求报文和响应报文,以及IP数据包的相关特征的基础上,实现了基于IP地址、URL的请求报文过滤以及基于关键词的响应报文过滤的实时网页过滤系统。该系统同时运行于一个具体的网关计费系统,提高了网关的监控能力,为增强同类产品的网络安全尤其是在用户态防火墙和网关监控等方面提供了有益的参考。 展开更多
关键词 IP queue机制 实时网页过滤 HTTP报文 字符编码转化
在线阅读 下载PDF
基于优先级的Three-Queue调度算法研究 被引量:4
18
作者 顾宇 周良 丁秋林 《计算机科学》 CSCD 北大核心 2011年第B10期253-256,共4页
针对Hadoop平台上调度算法存在的不足,提出了一种改进的调度算法———Triple-Queue算法。在充分考虑数据的本地性后,Triple-Queue算法设计了一种改进的优先级计算模型,以有效地区分用户作业的等级,同时又保证一定程度的公平性,进而减... 针对Hadoop平台上调度算法存在的不足,提出了一种改进的调度算法———Triple-Queue算法。在充分考虑数据的本地性后,Triple-Queue算法设计了一种改进的优先级计算模型,以有效地区分用户作业的等级,同时又保证一定程度的公平性,进而减小作业执行时间,避免系统资源浪费。实验结果表明,随着数据量的提高,该算法执行效率明显提高,同时能够较好地解决数据本地性问题。 展开更多
关键词 调度 Triple-queue 数据本地性 MAPREDUCE
在线阅读 下载PDF
THE TRANSIENT SOLUTION FOR M/G/1 QUEUEWITH SERVER VACATIONS 被引量:13
19
作者 唐应辉 《Acta Mathematica Scientia》 SCIE CSCD 1997年第3期276-282,共7页
In this paper, the transient solutions for M/G/1 queues with single server vacation and multiple server vacations are firstly studied, and the recursion expressions of their Laplace transform are given. Further the di... In this paper, the transient solutions for M/G/1 queues with single server vacation and multiple server vacations are firstly studied, and the recursion expressions of their Laplace transform are given. Further the distribution and stochastic decomposition result of the queue length at a random point in equilibrium are directly obtained from the transient solution. As will be seen this paper provides a intuitive and elegant method for studying transient solutions for M/G/1 queues with single server. 展开更多
关键词 server-vacation queue length transient solution stochastic decomposition
在线阅读 下载PDF
基于Netfilter框架和IP Queue机制的轻量级网络防火墙实现 被引量:1
20
作者 刘建志 田志宏 《智能计算机与应用》 2012年第4期44-46,49,共4页
一般而言,要在Linux下开发防火墙的程序,需要对内核协议栈有深入的理解,并掌握内核协议栈代码的细节。这对普通开发者是非常有难度的。Netfilter是一个支持数据报过滤、数据报处理、NAT等功能的内核子系统框架。以Linux 2.6内核为基础。... 一般而言,要在Linux下开发防火墙的程序,需要对内核协议栈有深入的理解,并掌握内核协议栈代码的细节。这对普通开发者是非常有难度的。Netfilter是一个支持数据报过滤、数据报处理、NAT等功能的内核子系统框架。以Linux 2.6内核为基础。IP Queue机制是Linux内核在Netfilter框架的基础上提供的,是应用层上的机制,通过NetLink和内核进行交互,这使得开发一些用户态的防火墙应用成为可能。在此基础上,同时实现了一种基于Netfilter框架和IP Queue机制的轻量级防火墙。通过对比测试表明,由于设计清晰的模块架构、较强的可扩展性,本文实现的轻量级防火墙能够很好地达到实际要求,容易开发出更专业防火墙程序。 展开更多
关键词 NETFILTER IP queue 防火墙
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部