The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an...The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.展开更多
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru...Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.展开更多
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen...We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.展开更多
In this paper,we introduce a qualitative analysis in order to study the monotonicity and comparability properties of a single-server retrial queueing model with Bernoulli feedback and negative customers,relative to st...In this paper,we introduce a qualitative analysis in order to study the monotonicity and comparability properties of a single-server retrial queueing model with Bernoulli feedback and negative customers,relative to stochastic orderings.Performance measures of such a system are available explicitly,while their forms are cumbersome(these formulas include integrals of Laplace transform,solutions of functional equations,etc.).Therefore,they are not exploitable from the application point of view.To overcome these difficulties,we present stochastic comparison methods in order to get qualitative estimates of these measures.In particular,we prove the monotonicity of the transition operator of the embedded Markov chain.In addition,we establish conditions for which transition operators as well as stationary probabilities,associated with two embedded Markov chains,having the same structure but with different parameters,are comparable relative to the given stochastic orderings.Further,numerical examples are carried out to illustrate the theoretical results.展开更多
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or...Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content.展开更多
Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only...Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments.展开更多
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin...This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.展开更多
高性能同轴电缆网络(High Performance Network Over Coax,HINOC)技术是一种光纤同轴混合接入技术,已发展至第3代。为了实现万兆以太网的接入速率,第3代HINOC引入了多信道绑定机制。但该机制在有效扩展HINOC网络信道带宽的同时易导致HIM...高性能同轴电缆网络(High Performance Network Over Coax,HINOC)技术是一种光纤同轴混合接入技术,已发展至第3代。为了实现万兆以太网的接入速率,第3代HINOC引入了多信道绑定机制。但该机制在有效扩展HINOC网络信道带宽的同时易导致HIMAC(HINOC Medium Access Control)拆帧端接收的数据流失序。针对该问题,文中提出了一种拆帧重排序方法。通过重排序队列缓存管理、入队逻辑地址计算、超时判断及清空以及出队判断等关键技术的设计和实现来解决多信道绑定机制引起的拆帧乱序问题,并对其关键功能点进行仿真验证和板级验证。实验结果表明,所提方法能够有效处理多信道绑定导致的乱序问题,并且能够确保系统在遇到错误情况时稳定运行,具有较强的鲁棒性,满足万兆同轴宽带接入HIMAC 3.0的功能和性能要求。展开更多
In this paper, the transient solutions for M/G/1 queues with single server vacation and multiple server vacations are firstly studied, and the recursion expressions of their Laplace transform are given. Further the di...In this paper, the transient solutions for M/G/1 queues with single server vacation and multiple server vacations are firstly studied, and the recursion expressions of their Laplace transform are given. Further the distribution and stochastic decomposition result of the queue length at a random point in equilibrium are directly obtained from the transient solution. As will be seen this paper provides a intuitive and elegant method for studying transient solutions for M/G/1 queues with single server.展开更多
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01295).
文摘Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.
基金supported by the National Natural Science Foundation of China(Grant No.11971486)。
文摘We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.
文摘In this paper,we introduce a qualitative analysis in order to study the monotonicity and comparability properties of a single-server retrial queueing model with Bernoulli feedback and negative customers,relative to stochastic orderings.Performance measures of such a system are available explicitly,while their forms are cumbersome(these formulas include integrals of Laplace transform,solutions of functional equations,etc.).Therefore,they are not exploitable from the application point of view.To overcome these difficulties,we present stochastic comparison methods in order to get qualitative estimates of these measures.In particular,we prove the monotonicity of the transition operator of the embedded Markov chain.In addition,we establish conditions for which transition operators as well as stationary probabilities,associated with two embedded Markov chains,having the same structure but with different parameters,are comparable relative to the given stochastic orderings.Further,numerical examples are carried out to illustrate the theoretical results.
基金funded by Scientific Research Deanship at University of Hail-Saudi Arabia through Project Number RG-23092.
文摘Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content.
基金supported by King Saud University,Riyadh,Saudi Arabia,under Ongoing Research Funding Program(ORF-2025-951).
文摘Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments.
基金The National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z202)the National Key Technology R & D Program of China during the 11th Five-Year Plan Period(No. 2006BAJ18B03)the Fundamental Research Funds for the Central Universities (No. DUT10RC(3) 112)
文摘This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.
文摘高性能同轴电缆网络(High Performance Network Over Coax,HINOC)技术是一种光纤同轴混合接入技术,已发展至第3代。为了实现万兆以太网的接入速率,第3代HINOC引入了多信道绑定机制。但该机制在有效扩展HINOC网络信道带宽的同时易导致HIMAC(HINOC Medium Access Control)拆帧端接收的数据流失序。针对该问题,文中提出了一种拆帧重排序方法。通过重排序队列缓存管理、入队逻辑地址计算、超时判断及清空以及出队判断等关键技术的设计和实现来解决多信道绑定机制引起的拆帧乱序问题,并对其关键功能点进行仿真验证和板级验证。实验结果表明,所提方法能够有效处理多信道绑定导致的乱序问题,并且能够确保系统在遇到错误情况时稳定运行,具有较强的鲁棒性,满足万兆同轴宽带接入HIMAC 3.0的功能和性能要求。
文摘In this paper, the transient solutions for M/G/1 queues with single server vacation and multiple server vacations are firstly studied, and the recursion expressions of their Laplace transform are given. Further the distribution and stochastic decomposition result of the queue length at a random point in equilibrium are directly obtained from the transient solution. As will be seen this paper provides a intuitive and elegant method for studying transient solutions for M/G/1 queues with single server.