期刊文献+
共找到13,389篇文章
< 1 2 250 >
每页显示 20 50 100
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
1
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
2
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning TF-IDF Word2Vec social media analysis transformer models
在线阅读 下载PDF
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
3
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
Knowledge discovery method for feature-decision level fusion of multiple classifiers 被引量:1
4
作者 孙亮 韩崇昭 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期222-227,共6页
To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different featur... To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV). 展开更多
关键词 multiple classifier fusion knowledge discovery Dempster-Shafer theory generalized rough set HYPERSPECTRAL
在线阅读 下载PDF
Multi-Class Classification Methods of Cost-Conscious LS-SVM for Fault Diagnosis of Blast Furnace 被引量:15
5
作者 LIU Li-mei WANG An-na SHA Mo ZHAO Feng-yun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期17-23,33,共8页
Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discre... Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace. 展开更多
关键词 blast furnace fault diagnosis eosc-conscious LS-SVM multi-class classification
原文传递
Flow Field Characteristics of the Rotor Cage in Turbo Air Classifiers 被引量:2
6
作者 GUO Lijie LIU Jiaxiang LIU Shengzhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期426-432,共7页
The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air class... The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated trader different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit. 展开更多
关键词 turbo air classifier rotor cage flow field characteristic laser Doppler velocimeter(LDV)
在线阅读 下载PDF
Predicting Stock Prices Using Polynomial Classifiers: The Case of Dubai Financial Market 被引量:4
7
作者 Khaled Assaleh Hazim El-Baz Saeed Al-Salkhadi 《Journal of Intelligent Learning Systems and Applications》 2011年第2期82-89,共8页
Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile... Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price. 展开更多
关键词 DUBAI FINANCIAL MARKET POLYNOMIAL classifiers STOCK MARKET Neural Networks
暂未订购
A combined algorithm of K-means and MTRL for multi-class classification 被引量:2
8
作者 XUE Mengfan HAN Lei PENG Dongliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期875-885,共11页
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla... The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset. 展开更多
关键词 machine LEARNING multi-class classification K-MEANS MULTI-TASK RELATIONSHIP LEARNING (MTRL) OVER-FITTING
在线阅读 下载PDF
Classification performance of model coal mill classifiers with swirling and non-swirling inlets 被引量:6
9
作者 Lele Feng Hai Zhang +4 位作者 Lilin Hu Yang Zhang Yuxin Wu Yuzhao Wang Hairui Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期777-784,共8页
The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measur... The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique.The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet.With the swirling inlet,there was a vortex located between two neighboring blades,while with the nonswirling inlet,the vortex was attached to the blade tip.The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet.The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary(~0 r·min-1).As the impeller rotational speed increased,the cut size of the cases with non-swirling and swirling inlets both decreased,and the one with the non-swirling inlet decreased more dramatically.The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed(≥120 r·min-1).The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet,and monotonically increased as the impeller rotational speed increased.With the swirling inlet,the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120 r·min-1,and the variation trend of the separation efficiency was more moderate.As the initial particle concentration increased,the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed.At a low initial particle concentration(b 0.04 kg·m-3),the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet. 展开更多
关键词 Coal mill classifier Cut size Non-swirling inlet Particle image velocimetry Impeller rotational speed
在线阅读 下载PDF
An Alignment-Based Approach to L2 Learning of Chinese Numeral Classifiers 被引量:5
10
作者 Chuming WANG Wei HONG 《Chinese Journal of Applied Linguistics》 2021年第3期335-350,431,共17页
This study investigated the efficiency of learning the Chinese numeral classifiers by L2 Chinese learners by means of an alignment-oriented task. Participants were a total of 96 intermediate learners of L2 Chinese, wh... This study investigated the efficiency of learning the Chinese numeral classifiers by L2 Chinese learners by means of an alignment-oriented task. Participants were a total of 96 intermediate learners of L2 Chinese, who were randomly assigned to two experimental groups and one control group, with each group consisting of 32 participants. The continuation task used in this study consisted of a picture-based Chinese text depicting a room with an array of objects, which necessitates the use of classifiers. The two experimental groups were both required to first read the text and then write to describe their own rooms in comparison with the one in the text. One group was instructed to use the classifiers from the text as much as possible in their writing, whereas the other was not required to do so. Participants in the control group were first given the picture to look at in the absence of the text and then asked to describe their own rooms. The results showed that the continuation task significantly enhanced participants’ retention of the Chinese numeral classifiers, suggesting that the alignment-based approach is an effective way to learn difficult linguistic categories such as the Chinese classifiers. 展开更多
关键词 ALIGNMENT interaction continuation task learn-together-use-together(LTUT)principle classifiers
在线阅读 下载PDF
Multi-class Classification Methods of Enhanced LS-TWSVM for Strip Steel Surface Defects 被引量:4
11
作者 Mao-xiang CHU An-na WANG +1 位作者 Rong-fen GONG Mo SHA 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期174-180,共7页
Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region sam... Considering strip steel surface defect samples, a multi-class classification method was proposed based on enhanced least squares twin support vector machines (ELS-TWSVMs) and binary tree. Firstly, pruning region samples center method with adjustable pruning scale was used to prune data samples. This method could reduce classifierr s training time and testing time. Secondly, ELS-TWSVM was proposed to classify the data samples. By introducing error variable contribution parameter and weight parameter, ELS-TWSVM could restrain the impact of noise sam- ples and have better classification accuracy. Finally, multi-class classification algorithms of ELS-TWSVM were pro- posed by combining ELS-TWSVM and complete binary tree. Some experiments were made on two-dimensional data- sets and strip steel surface defect datasets. The experiments showed that the multi-class classification methods of ELS-TWSVM had higher classification speed and accuracy for the datasets with large-scale, unbalanced and noise samples. 展开更多
关键词 multi-class classification least squares twin support vector machine error variable contribution WEIGHT binary tree strip steel surface
原文传递
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
12
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect multi-class classification Supporting vector machine Adjustable hyper-sphere
原文传递
Multi-class classification method for steel surface defects with feature noise 被引量:2
13
作者 Mao-xiang Chu Yao Feng +1 位作者 Yong-hui Yang Xin Deng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第3期303-315,共13页
Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact o... Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact of feature noise,an anti-noise multi-class classification method was proposed for steel surface defects.On the one hand,a novel anti-noise support vector hyper-spheres(ASVHs)classifier was formulated.For N types of defects,the ASVHs classifier built N hyper-spheres.These hyper-spheres were insensitive to feature and label noise.On the other hand,in order to reduce the costs of online time and storage space,the defect samples were pruned by support vector data description with parameter iteration adjustment strategy.In the end,the ASVHs classifier was built with sparse defect samples set and auxiliary information.Experimental results show that the novel multi-class classification method has high efficiency and accuracy for corrupted defect samples in steel surface. 展开更多
关键词 Steel surface defect multi-class classification Anti-noise support vector hyper-sphere Parameter iteration adjustment Feature noise
原文传递
Real and Altered Fingerprint Classification Based on Various Features and Classifiers 被引量:1
14
作者 Saif Saad Hameed Ismail Taha Ahmed Omar Munthir Al Okashi 《Computers, Materials & Continua》 SCIE EI 2023年第1期327-340,共14页
Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints... Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy. 展开更多
关键词 Fingerprint classification HOG SFTA discriminant analysis(DCA)classifier gaussian discriminant analysis(GDA)classifier SOCOFing
在线阅读 下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
15
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
在线阅读 下载PDF
Fault Detection of Fuel Injectors Based on One-Class Classifiers 被引量:1
16
作者 Dimitrios Moshou Athanasios Natsis +3 位作者 Dimitrios Kateris Xanthoula-Eirini Pantazi Ioannis Kalimanis Ioannis Gravalos 《Modern Mechanical Engineering》 2014年第1期19-27,共9页
Fuel injectors are considered as an important component of combustion engines. Operational weakness can possibly lead to the complete machine malfunction, decreasing reliability and leading to loss of production. To o... Fuel injectors are considered as an important component of combustion engines. Operational weakness can possibly lead to the complete machine malfunction, decreasing reliability and leading to loss of production. To overcome these circumstances, various condition monitoring techniques can be applied. The application of acoustic signals is common in the field of fault diagnosis of rotating machinery. Advanced signal processing is utilized for the construction of features that are specialized in detecting fuel injector faults. A performance comparison between novelty detection algorithms in the form of one-class classifiers is presented. The one-class classifiers that were tested included One-Class Support Vector Machine (OCSVM) and One-Class Self Organizing Map (OCSOM). The acoustic signals of fuel injectors in different operational conditions were processed for feature extraction. Features from all the signals were used as input to the one-class classifiers. The one-class classifiers were trained only with healthy fuel injector conditions and compared with new experimental data which belonged to different operational conditions that were not included in the training set so as to contribute to generalization. The results present the effectiveness of one-class classifiers for detecting faults in fuel injectors. 展开更多
关键词 Fuel Injectors FAULT Detection ACOUSTICS NEURAL Networks ONE-CLASS classifiers
暂未订购
Power Quality Disturbance Classification Method Based on Wavelet Transform and SVM Multi-class Algorithms 被引量:1
17
作者 Xiao Fei 《Energy and Power Engineering》 2013年第4期561-565,共5页
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav... The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification. 展开更多
关键词 Power Quality DISTURBANCE classification WAVELET TRANSFORM SVM multi-class ALGORITHMS
在线阅读 下载PDF
Video Concept Detection Based on Multiple Features and Classifiers Fusion 被引量:1
18
作者 Dong Yuan Zhang Jiwei +2 位作者 Zhao Nan Chang Xiaofu Liu Wei 《China Communications》 SCIE CSCD 2012年第8期105-121,共17页
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ... The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts. 展开更多
关键词 concept detection visual feature extraction kemel-based learning classifier fusion
在线阅读 下载PDF
Combination of classifiers with incomplete frames of discernment 被引量:1
19
作者 Zhunga LIU Jingfei DUAN +2 位作者 Linqing HUANG Jean DEZERT Yongqiang ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期145-157,共13页
The methods for combining multiple classifiers based on belief functions require to work with a common and complete(closed)Frame of Discernment(Fo D)on which the belief functions are defined before making their combin... The methods for combining multiple classifiers based on belief functions require to work with a common and complete(closed)Frame of Discernment(Fo D)on which the belief functions are defined before making their combination.This theoretical requirement is however difficult to satisfy in practice because some abnormal(or unknown)objects that do not belong to any predefined class of the Fo D can appear in real classification applications.The classifiers learnt using different attributes information can provide complementary knowledge which is very useful for making the classification but they are usually based on different Fo Ds.In order to clearly identify the specific class of the abnormal objects,we propose a new method for combination of classifiers working with incomplete frames of discernment,named CCIF for short.This is a progressive detection method that select and add the detected abnormal objects to the training data set.Because one pattern can be considered as an abnormal object by one classifier and be committed to a specific class by another one,a weighted evidence combination method is proposed to fuse the classification results of multiple classifiers.This new method offers the advantage to make a refined classification of abnormal objects,and to improve the classification accuracy thanks to the complementarity of the classifiers.Some experimental results are given to validate the effectiveness of the proposed method using real data sets. 展开更多
关键词 Abnormal object Belief functions classifier fusion Evidence theory DETECTION
原文传递
Integrating RFID Technology with Intelligent Classifiers for Meaningful Prediction Knowledge 被引量:1
20
作者 Peter Darcy Steven Tucker Bela Stantic 《Advances in Internet of Things》 2013年第2期27-33,共7页
Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literat... Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literature such as pet identification and luggage tracking which have increased the efficiency and effectiveness of each environment into which it was integrated. However, due to the ambiguous nature of the captured information with the existence of missing, wrong and duplicate readings, the wide-scale adoption of the architecture is limited to commercial sectors where the integrity of the observations can tolerate ambiguity. In this work, we propose an application of RFID to take the reporting of class attendance and to integrate a predictive classifier to extract high level meaningful information that can be used in diverse areas such as scheduling and low student retention. We conclude by providing an analysis of the core strengths and opportunities that exist for this concept and how we might extend it in future research. 展开更多
关键词 RADIO Frequency Identification classifiER PREDICTION NEURAL NETWORK BAYESIAN NETWORK
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部