A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detectio...A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detection, the multi-class method is constructed with Hadamard matrix and two-class Support Vector Machines. In order to minimize the complexity of the algorithm, sparse coding method is applied in this paper. The comprehensive experimental results show that this modified multi-class method has better attack detection rate compared with other three coding algorithms, and its time efficiency is higher than Hadamard coding algorithm.展开更多
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an...The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.展开更多
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru...Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.展开更多
针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现...针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。展开更多
Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discre...Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace.展开更多
文摘A multi-class method is proposed based on Error Correcting Output Codes algorithm in order to get better performance of attack recognition in Wireless Sensor Networks. Aiming to enhance the accuracy of attack detection, the multi-class method is constructed with Hadamard matrix and two-class Support Vector Machines. In order to minimize the complexity of the algorithm, sparse coding method is applied in this paper. The comprehensive experimental results show that this modified multi-class method has better attack detection rate compared with other three coding algorithms, and its time efficiency is higher than Hadamard coding algorithm.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01295).
文摘Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.
文摘针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。
基金Item Sponsored by National Natural Science Foundation of China(60843007,61050006)
文摘Aiming at the limitations of rapid fault diagnosis of blast furnace, a novel strategy based on cost-conscious least squares support vector machine (LS-SVM) is proposed to solve this problem. Firstly, modified discrete particle swarm optimization is applied to optimize the feature selection and the LS-SVM parameters. Secondly, cost-con- scious formula is presented for fitness function and it contains in detail training time, recognition accuracy and the feature selection. The CLS-SVM algorithm is presented to increase the performance of the LS-SVM classifier. The new method can select the best fault features in much shorter time and have fewer support vectbrs and better general- ization performance in the application of fault diagnosis of the blast furnace. Thirdly, a gradual change binary tree is established for blast furnace faults diagnosis. It is a multi-class classification method based on center-of-gravity formula distance of cluster. A gradual change classification percentage ia used to select sample randomly. The proposed new metbod raises the sped of diagnosis, optimizes the classifieation scraraey and has good generalization ability for fault diagnosis of the application of blast furnace.