Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditiona...Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditional villages can provide objective basis for its overall protection and development.Based on the field research,drawing on the theory of cultural landscape,southwest Hubei is taken as the research object,and the index system of cultural landscape type division of traditional villages is constructed from three levels of culture,geography and village carrier.Adopting the multi-attribute weighted k-modes clustering algorithm,92 traditional villages in southwest Hubei are divided into three major types,which are the western Tujia cultural characteristic area,the southern Tujia-Miao cultural penetration area,and the northern multi-ethnic cultural mixed area,and the characteristics of each area are summarized.The regional characteristics of traditional villages in southwest Hubei at the cultural landscape level are analysed from a macro point of view,which provides a reference for more objective cognition of the distribution law of traditional villages in southwest Hubei,and carrying out the contiguous protection of traditional villages.展开更多
Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challen...Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.展开更多
In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integra...In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems.展开更多
An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attr...An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.展开更多
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso...In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.展开更多
In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout...An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.展开更多
[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among a...[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.展开更多
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,...In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,one main challenge lies in the deadlock-avoidance for the dispatching process of a multiple-load AGV system.To prevent the system from falling into a deadlock,a strategy of keeping the number of jobs in the system(NJIS)at a low level is adopted in most existing literatures.It is noteworthy that a low-level NJIS will make the processing machine easier to be starved,thereby reducing the system efficiency unavoidably.The motivation of the paper is to develop a deadlock-avoidance dispatching method for a multiple-load AGV system operating at a high NJIS level.Firstly,the deadlock-avoidance dispatching method is devised by incorporating a deadlock-avoidance strategy into a dispatching procedure that contains four sub-problems.In this strategy,critical tasks are recognized according to the status of workstation buffers,and then temporarily forbidden to avoid potential deadlocks.Secondly,three multiattribute dispatching rules are designed for system efficiency,where both the traveling distance and the buffer status are taken into account.Finally,a simulation system is developed to evaluate the performance of the proposed deadlock-avoidance strategy and dispatching rules at different NJIS levels.The experimental results demonstrate that our deadlock-avoidance dispatching method can improve the system efficiency at a high NJIS level and the adaptability to various system settings,while still avoiding potential deadlocks.展开更多
In order to reduce the possibility that quality problems occur resulting from “ bad ” weather, a new dispatching rule is designed for the job sequencing problem in the machine shop of a wood furniture factory. First...In order to reduce the possibility that quality problems occur resulting from “ bad ” weather, a new dispatching rule is designed for the job sequencing problem in the machine shop of a wood furniture factory. First, two indices including risky duration and risk magnitude are established to characterize the weather conditions. Based on these two indices, the job suitability under the future air state is derived by the fuzzy decision method, and integrated with atraditional heuristic to compute the dispatching priority of each job. Then, a new measure matching degree is constructed to evaluate the effectiveness of the dispatching rule. The greater the matching degree, the smaller the possibility that the quality problems of wood products occur. Finally, simulation experiments show that the dispatching rule can greatly increase the matching degree while maintaining low weighted tardiness.展开更多
Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation o...Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the...A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.展开更多
An integrated GPS and GIS based vehicle dispatching system was presented. The system uses GIS technology for the development of digital mine map database and GPS for vehicle positioning. The system consists of five mo...An integrated GPS and GIS based vehicle dispatching system was presented. The system uses GIS technology for the development of digital mine map database and GPS for vehicle positioning. The system consists of five modules: position module incorporated GPS and dead reckoning (DR); a map database structure for displaying and guidance purposes; a routing module based on the map database is able to give out the best route for the vehicles; map matching and route guidance module put the vehicle position to its exact location on the road despite of errors in positioning and map data; and the client-server module allows client exchange information between driver and control centre. The system can be operated in client-server level in which users can request routing and guidance with devices such as hand phone and PDA by communicating their current positions to the server or runs in autonomous mode when users cannot reach the server.展开更多
There are two kinds of dispatching policies in content-aware web server cluster; segregation dispatching policy and mixture dispatching policy. Traditional scheduling algorithms all adopt mixture dispatching policy. T...There are two kinds of dispatching policies in content-aware web server cluster; segregation dispatching policy and mixture dispatching policy. Traditional scheduling algorithms all adopt mixture dispatching policy. They do not consider that dynamic requests' serving has the tendency to slow down static requests' serving, and that different requests have different resource demands, so they can not use duster's resource reasonably and effectively. This paper uses stochastic reward net (SRN) to model and analyze the two dispatching policies, and uses stochastic Petri net package (SPNP) to simulate the models. The simulation results and practical tests both show that segregation dispatching policy is better than mixture dispatching policy. The principle of segregation dispatching policy can guide us to design efficient scheduling algorithm.展开更多
The function of the air target threat evaluation(TE)is the foundation for weapons allocation and senor resources management within the surface air defense.The multi-attribute evaluation methodology is utilized to addr...The function of the air target threat evaluation(TE)is the foundation for weapons allocation and senor resources management within the surface air defense.The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes.Meanwhile,the intuitionistic fuzzy set(IFS)is employed to deal with information uncertainty in the TE process.Furthermore,on the basis of the entropy weight and inclusion-comparison probability,a hybrid TE method is developed.In order to accommodate the demands of naturalistic decision making,the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target.An illustrative example is provided to indicate the feasibility and advantage of the proposed method.展开更多
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金Philosophy and Social Sciences Research Project of Hubei Provincial Department of Education(22D057).
文摘Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditional villages can provide objective basis for its overall protection and development.Based on the field research,drawing on the theory of cultural landscape,southwest Hubei is taken as the research object,and the index system of cultural landscape type division of traditional villages is constructed from three levels of culture,geography and village carrier.Adopting the multi-attribute weighted k-modes clustering algorithm,92 traditional villages in southwest Hubei are divided into three major types,which are the western Tujia cultural characteristic area,the southern Tujia-Miao cultural penetration area,and the northern multi-ethnic cultural mixed area,and the characteristics of each area are summarized.The regional characteristics of traditional villages in southwest Hubei at the cultural landscape level are analysed from a macro point of view,which provides a reference for more objective cognition of the distribution law of traditional villages in southwest Hubei,and carrying out the contiguous protection of traditional villages.
文摘Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.
文摘In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant(WIPP)and renewable energy accommodation,an electricity-hydrogen-waste multi-energy system integrated with phase change material(PCM)thermal storage is proposed.First,a thermal energy management framework is constructed,combining PCM thermal storage with the alkaline electrolyzer(AE)waste heat recovery and the heat pump(HP),while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation.Next,a flue gas treatment method based on purification-separation-storage coordination is adopted,achieving spatiotemporal decoupling between waste incineration and flue gas treatment.Subsequently,a two-stage optimal dispatching strategy for the multi-energy system is developed:the first stage establishes a dayahead economic dispatch model with the objective of minimizing net system costs,while the second stage introduces model predictive control(MPC)to realize intraday rolling optimization.Finally,The optimal dispatching strategies under different scenarios are obtained using the Gurobi solver,followed by a comparative analysis of the optimized operational outcomes.Simulation results demonstrate that the proposed system optimizes the output and operational states of each unit,simultaneously reducing carbon trading costs while increasing electricity sales revenue.The proposed scheduling strategy demonstrates effective grid peak-shaving functionality,thereby simultaneously improving the system’s economic performance and operational flexibility while providing an innovative technical pathway for municipal solid waste(MSW)resource utilization and low-carbon transformation of energy systems.
文摘An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.
基金The National Natural Science Foundation of China (No.50422283)the Science and Technology Key Plan Project of Henan Province (No.072102360060)
文摘In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
基金The National Natural Science Foundation of China(No.71101025)the Science and Technology Key Plan Project of Changzhou(No.CE20125001)
文摘An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.
基金Supported by the Science Research and Development Project of Nanning City(201002030B)~~
文摘[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
基金supported by the National Natural Science Foundation of China(Nos.52005427,61973154)the National Defense Basic Scientific Research Program of China(No.JCKY2018605C004)+1 种基金the Natural Science Research Project of Jiangsu Higher Education Institutions(Nos.19KJB510013,18KJA460009)the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.KFJJ20190516)。
文摘In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,one main challenge lies in the deadlock-avoidance for the dispatching process of a multiple-load AGV system.To prevent the system from falling into a deadlock,a strategy of keeping the number of jobs in the system(NJIS)at a low level is adopted in most existing literatures.It is noteworthy that a low-level NJIS will make the processing machine easier to be starved,thereby reducing the system efficiency unavoidably.The motivation of the paper is to develop a deadlock-avoidance dispatching method for a multiple-load AGV system operating at a high NJIS level.Firstly,the deadlock-avoidance dispatching method is devised by incorporating a deadlock-avoidance strategy into a dispatching procedure that contains four sub-problems.In this strategy,critical tasks are recognized according to the status of workstation buffers,and then temporarily forbidden to avoid potential deadlocks.Secondly,three multiattribute dispatching rules are designed for system efficiency,where both the traveling distance and the buffer status are taken into account.Finally,a simulation system is developed to evaluate the performance of the proposed deadlock-avoidance strategy and dispatching rules at different NJIS levels.The experimental results demonstrate that our deadlock-avoidance dispatching method can improve the system efficiency at a high NJIS level and the adaptability to various system settings,while still avoiding potential deadlocks.
基金The National Natural Science Foundation of China(No.61273119)
文摘In order to reduce the possibility that quality problems occur resulting from “ bad ” weather, a new dispatching rule is designed for the job sequencing problem in the machine shop of a wood furniture factory. First, two indices including risky duration and risk magnitude are established to characterize the weather conditions. Based on these two indices, the job suitability under the future air state is derived by the fuzzy decision method, and integrated with atraditional heuristic to compute the dispatching priority of each job. Then, a new measure matching degree is constructed to evaluate the effectiveness of the dispatching rule. The greater the matching degree, the smaller the possibility that the quality problems of wood products occur. Finally, simulation experiments show that the dispatching rule can greatly increase the matching degree while maintaining low weighted tardiness.
基金This research was funded by the Humanities and Social Sciences Foundation of Ministry of Education of the Peoples Republic of China(17YJA630115)The recipient of the founding is DX.
文摘Due to the complexity of decision-making problems and the subjectivity of decision-makers in practical application,it is necessary to adopt different forms of information expression according to the actual situation of specific decision-making problems and choose the best method to solve them.Multi-valued neutrosophic set,as an extension of neutrosophic set,can more effectively and accurately describe incomplete,uncertain or inconsistent information.TODIM and TOPSIS methods are two commonly used multi-attribute decision-making methods,each of which has its advantages and disadvantages.This paper proposes a new method based on TODIM and TOPSIS to solve multi-attribute decision-making problems under multi-valued neutrosophic environment.After introducing the related theory of multi-valued neutrosophic set and the traditional TODIM and TOPSIS methods,the new method based on a combination of TODIM and TOPSIS methods is described.And then,two illustrative examples proved the feasibility and validity of the proposed method.Finally,the result has been compared with some existing methods under the same examples and the proposed method’s superiority has been proved.This paper studies this kind of decision-making problem from algorithm idea,algorithm steps and decision-making influencing factors.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
基金supported by the National Natural Science Foundation of China(51405499)
文摘A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.
基金Project (202183380) supported by the Research Programof the Educational Depart ment of Liaoning Province
文摘An integrated GPS and GIS based vehicle dispatching system was presented. The system uses GIS technology for the development of digital mine map database and GPS for vehicle positioning. The system consists of five modules: position module incorporated GPS and dead reckoning (DR); a map database structure for displaying and guidance purposes; a routing module based on the map database is able to give out the best route for the vehicles; map matching and route guidance module put the vehicle position to its exact location on the road despite of errors in positioning and map data; and the client-server module allows client exchange information between driver and control centre. The system can be operated in client-server level in which users can request routing and guidance with devices such as hand phone and PDA by communicating their current positions to the server or runs in autonomous mode when users cannot reach the server.
基金Supported by the National Natural Science Foun-dation of China (90204008) the Science Council of Wuhan(20001001004)
文摘There are two kinds of dispatching policies in content-aware web server cluster; segregation dispatching policy and mixture dispatching policy. Traditional scheduling algorithms all adopt mixture dispatching policy. They do not consider that dynamic requests' serving has the tendency to slow down static requests' serving, and that different requests have different resource demands, so they can not use duster's resource reasonably and effectively. This paper uses stochastic reward net (SRN) to model and analyze the two dispatching policies, and uses stochastic Petri net package (SPNP) to simulate the models. The simulation results and practical tests both show that segregation dispatching policy is better than mixture dispatching policy. The principle of segregation dispatching policy can guide us to design efficient scheduling algorithm.
基金supported by the National Natural Science Foundation of China(7087111770571086)the Development Foundation of Dalian Naval Academy
文摘The function of the air target threat evaluation(TE)is the foundation for weapons allocation and senor resources management within the surface air defense.The multi-attribute evaluation methodology is utilized to address the issue of the TE in which the tactic features of the detected target are treated as evaluation attributes.Meanwhile,the intuitionistic fuzzy set(IFS)is employed to deal with information uncertainty in the TE process.Furthermore,on the basis of the entropy weight and inclusion-comparison probability,a hybrid TE method is developed.In order to accommodate the demands of naturalistic decision making,the proposed method allows air defense commanders to express their intuitive opinions besides incorporating into the threat features of the detected target.An illustrative example is provided to indicate the feasibility and advantage of the proposed method.