期刊文献+
共找到22,112篇文章
< 1 2 250 >
每页显示 20 50 100
Passenger travel behavior in urban rail transit based on the networked model
1
作者 Haining Sun Keping Li +2 位作者 Zhiao Ma Yuanxi Xu Yan Liang 《Communications in Theoretical Physics》 2025年第12期1-13,共13页
Urban rail transit is an efficient and environmentally friendly mode of transport,which is an important means of transportation for passengers.From a holistic point of view,this paper constructs an urban rail transit ... Urban rail transit is an efficient and environmentally friendly mode of transport,which is an important means of transportation for passengers.From a holistic point of view,this paper constructs an urban rail transit interchange topology(URTIT)network based on the interchange relationships among lines.We investigate a unique influence propagation mechanism to explore the impact of applying new technologies on the passenger travel behavior of urban rail transit.We analyze the influence from three aspects:the influence range,the influence propagation path,and the influence intensity.Based on the Dijkstra algorithm,the influence propagation paths are found according to the shortest transfer time.The improved path-based gravity model is applied to measure the influence intensity.The case study on urban rail transit in Beijing,China is carried out.The influence propagation mechanism of a single line in the Beijing URTIT network is analyzed,considering that Beijing Subway Line S1 is equipped with magnetic levitation technology.We not only quantify the impact of technologies on passenger travel behavior of urban rail transit,but also perform the sensitivity analysis.To avoid randomness,the influence propagation mechanisms of all lines are explored in this paper.The research results correspond to the situation in reality,which can provide certain references for urban rail transit operation and planning. 展开更多
关键词 urban rail transit topology network influence propagation gravity model
原文传递
Pavement Crack Extraction Based on Multi⁃scale Convolutional Neural Network
2
作者 ZHAN Biheng SONG Xiangyu +2 位作者 CHENG Jianrui QIAO Pan WANG Tengfei 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第6期749-766,共18页
Cracks represent a significant hazard to pavement integrity,making their efficient and automated extraction essential for effective road health monitoring and maintenance.In response to this challenge,we propose a cra... Cracks represent a significant hazard to pavement integrity,making their efficient and automated extraction essential for effective road health monitoring and maintenance.In response to this challenge,we propose a crack automatic extraction network model that integrates multi⁃scale image features,thereby enhancing the model’s capability to capture crack characteristics and adaptation to complex scenarios.This model is based on the ResUNet architecture,makes modification to the convolutional layer of the model,proposes to construct multiple branches utilizing different convolution kernel sizes,and adds a atrous spatial pyramid pooling module within the intermediate layers.In this paper,comparative experiments on the performance of the basic model,ablation experiments,comparative experiments before and after data augmentation,and generalization verification experiments are conducted.Comparative experimental results indicate that the improved model exhibits superior detail processing capability at crack edges.The overall performance of the model,as measured by the F1⁃score,reaches 71.03%,reflecting a 2.1%improvement over the conventional ResUNet. 展开更多
关键词 road engineering neural networks multi⁃scale convolution pavement cracks
在线阅读 下载PDF
Time-Varying Formation Tracking Control of Heterogeneous Multi-Agent Systems With Intermittent Communications and Directed Switching Networks
3
作者 Yuhan Wang Zhuping Wang +1 位作者 Hao Zhang Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期294-296,共3页
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so... Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems. 展开更多
关键词 switched systems time varying formation tracking directed switching networks heterogeneous multi agent systems intermittent communications exponential stability
在线阅读 下载PDF
Multi-Distributed Sampling Method to Optimize Physical-Informed Neural Networks for Solving Optical Solitons
4
作者 Huasen Zhou Zhiyang Zhang +2 位作者 Muwei Liu Fenghua Qi Wenjun Liu 《Chinese Physics Letters》 2025年第7期1-9,共9页
Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neur... Optical solitons,as self-sustaining waveforms in a nonlinear medium where dispersion and nonlinear effects are balanced,have key applications in ultrafast laser systems and optical communications.Physics-informed neural networks(PINN)provide a new way to solve the nonlinear Schrodinger equation describing the soliton evolution by fusing data-driven and physical constraints.However,the grid point sampling strategy of traditional PINN suffers from high computational complexity and unstable gradient flow,which makes it difficult to capture the physical details efficiently.In this paper,we propose a residual-based adaptive multi-distribution(RAMD)sampling method to optimize the PINN training process by dynamically constructing a multi-modal loss distribution.With a 50%reduction in the number of grid points,RAMD significantly reduces the relative error of PINN and,in particular,optimizes the solution error of the(2+1)Ginzburg–Landau equation from 4.55%to 1.98%.RAMD breaks through the lack of physical constraints in the purely data-driven model by the innovative combination of multi-modal distribution modeling and autonomous sampling control for the design of all-optical communication devices.RAMD provides a high-precision numerical simulation tool for the design of all-optical communication devices,optimization of nonlinear laser devices,and other studies. 展开更多
关键词 multi distributed sampling nonlinear schrodinger equation describing soliton evolution residual based adaptive grid point sampling strategy optical solitonsas optical communicationsphysics informed physical informed neural networks ultrafast laser systems
原文传递
Mean Field Annealing Neural Network for the Optimal DS/CDMA Multiuser Detector *
5
作者 仲文 程时昕 《Journal of Southeast University(English Edition)》 EI CAS 1998年第1期17-22,共6页
In this paper, an optimal multi user detector in DS/CDMA communication systems based on the mean field annealing (MFA) neural network is proposed. It is shown that the NP complete problem of minimizing the objective... In this paper, an optimal multi user detector in DS/CDMA communication systems based on the mean field annealing (MFA) neural network is proposed. It is shown that the NP complete problem of minimizing the objective function of the optimal multi user detector can be translated into minimizing an MFA network energy function. Numerical results show that the proposed detector offers significant performance gain relative to the conventional detector and decorrelating detector while it can be implemented easily in analog hardware. 展开更多
关键词 multi user detection near far problem mean field annealing neural network
在线阅读 下载PDF
Evolution and spatial characteristics of tourism field strength of cities linked by high-speed rail (HSR) network in China 被引量:7
6
作者 WANG Degen NIU Yu +3 位作者 SUN Feng WANG Kaiyong QIAN Jia LI Feng 《Journal of Geographical Sciences》 SCIE CSCD 2017年第7期835-856,共22页
Traffic is an indispensable prerequisite for a tourism system. The "four vertical and four horizontal" HSR network represents an important milestone of the "traffic revolution" in China. It will affect the spatial... Traffic is an indispensable prerequisite for a tourism system. The "four vertical and four horizontal" HSR network represents an important milestone of the "traffic revolution" in China. It will affect the spatial pattern of tourism accessibility in Chinese cities, thus substan- tially increasing their power to attract tourists and their radiation force. This paper examines the evolution and spatial characteristics of the power to attract tourism of cities linked by China's HSR network by measuring the influence of accessibility of 338 HSR-linked cities using GIS analysis. The results show the following. (1) The accessibility of Chinese cities is optimized by the HSR network, whose spatial pattern of accessibility exhibits an obvious traf- fic direction and causes a high-speed rail-corridor effect. (2) The spatial pattern of tourism field strength in Chinese cities exhibits the dual characteristics of multi-center annular diver- gence and dendritic diffusion. Dendritic diffusion is particularly more obvious along the HSR line. The change rate of urban tourism field strength forms a high-value corridor along the HSR line and exhibits a spatial pattern of decreasing area from the center to the outer limit along the HSR line. (3) The influence of the higher and highest tourism field strength areas along the HSR line is most significant, and the number of cities that distribute into these two types of tourism field strengths significantly increases: their area expands by more than 100% HSR enhances the tourism field strength value of regional central cities, and the radiation range of tourism attraction extends along the HSR line. 展开更多
关键词 high-speed rail network tourism field strength spatial pattern EVOLUTION China
原文传递
Real-time multi-step prediction control for BP network with delay 被引量:8
7
作者 张吉礼 欧进萍 于达仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第2期82-86,共5页
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i... Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system. 展开更多
关键词 DELAYED time system multi STEP prediction BP network COMPENSATION of DYNAMICAL characteristics fuzzy control simulation
在线阅读 下载PDF
A simulation model for estimating train and passenger delays in large-scale rail transit networks 被引量:5
8
作者 江志彬 李锋 +1 位作者 徐瑞华 高鹏 《Journal of Central South University》 SCIE EI CAS 2012年第12期3603-3613,共11页
A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that th... A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network. 展开更多
关键词 delay simulation passenger delay train delay rail transit network TIMETABLE
在线阅读 下载PDF
便携式拉曼光谱仪结合CGAN-Multi-CNN模型的矿物精确识别方法研究
9
作者 向艳芳 石红 +1 位作者 张家臣 蔡耀仪 《分析测试学报》 北大核心 2025年第6期1075-1085,共11页
野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼... 野外环境下天然未知矿物的快速识别受限于不同光谱设备分辨率差异、样本量不足导致的模型泛化能力弱以及高维复杂光谱特征的提取能力有限这三个难题。为了解决上述难题,该文设计并实现了一种多尺度卷积神经网络结合光谱样本生成的拉曼光谱分类模型,并联立便携式拉曼光谱仪实现了野外未知矿物的快速识别。首先,三次样条曲线拟合算法被用于实现不同设备所采集光谱的维数匹配,从而消除不同光谱设备之间采样分辨率的差异。其次,全球矿物光谱库包含1648类矿物的5668个光谱样本被送入生成对抗网络进行训练并产生15000个扩增样本,从而缓解了数据稀缺性对模型分类性能的制约。此外,一种新的多尺度深度卷积网络被用于同步提取拉曼光谱的宽峰与窄峰特征,从而增强复杂光谱的表征能力。实验中将所提出的模型与k-近邻(k-NN)、支持向量机(SVM)和随机森林(RF)等几类经典机器学习模型对未知矿物的识别性能进行对比。结果表明,所提出的多尺度卷积神经网络结合光谱样本生成的分类模型对未知矿物拉曼光谱的判别准确率远超其他传统机器学习模型,其top-1和top-3的准确率值分别为93.26%和98.94%。使用所提出的模型结合便携式拉曼光谱系统对50类未知天然矿石样本进行了识别,其准确率达到100%,单个样本的识别时间仅为1~2 min,体现了该方法快速、精确和无需取样制样的优势。 展开更多
关键词 拉曼光谱 矿物识别 重采样方法 多尺度卷积网络 条件生成对抗网络(CGAN)样本生成
在线阅读 下载PDF
Rail Internal Defect Detection Method Based on Enhanced Network Structure and Module Design Using Ultrasonic Images 被引量:3
10
作者 Fupei Wu Xiaoyang Xie Weilin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期277-288,共12页
Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operat... Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method. 展开更多
关键词 Ultrasonic detection rail defects detection Deep learning Enhanced network structure Module design
在线阅读 下载PDF
The Optimization Study about Fault Self-Healing Restoration of Power Distribution Network Based on Multi-Agent Technology 被引量:3
11
作者 Fuquan Huang Zijun Liu +2 位作者 Tinghuang Wang Haitai Zhang Tony Yip 《Computers, Materials & Continua》 SCIE EI 2020年第10期865-878,共14页
In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm i... In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network,a fault recovery method based on multi-objective optimization algorithm is proposed.The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault,solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma,and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid.The system proposed in this study takes power distribution network as the goal,applies fuzzy probability algorithm,simplifies the calculation process,avoids local extreme value,and finally realizes the energy balance between each power grid.Simulation results show that the Multi-Agent Technology enjoys priority in restoring important load,shortening the recovery time of power grid balance,and reducing the overall line loss rate of power grid.Therefore,the power grid fault self-healing system can improve the safety and stability of the important power grid,and reduce the economic loss rate of the whole power grid. 展开更多
关键词 multi agent TECHNOLOGY power distribution network fault self-healing
在线阅读 下载PDF
Importance Analysis of Urban Rail Transit Network Station Based on Passenger 被引量:4
12
作者 Jun Jin Man Li +4 位作者 Yanhui Wang Lingxi Zhu Liang Ping Bo Wang Ping Li 《Journal of Intelligent Learning Systems and Applications》 2013年第4期232-236,共5页
Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, c... Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples. 展开更多
关键词 STATION IMPORTANCE Point INTENSITY PASSENGER Urban rail TRANSIT network
在线阅读 下载PDF
Network analysis and spatial agglomeration of China’s high-speed rail: A dual network approach 被引量:1
13
作者 Wei Wang Wen-Bo Du +2 位作者 Wei-Han Li Lu(Carol)Tong Jiao-E Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期612-622,共11页
China has the largest high-speed railway(HSR) system in the world, and it has gradually reshaped the urban network.The HSR system can be represented as different types of networks in terms of the nodes and various rel... China has the largest high-speed railway(HSR) system in the world, and it has gradually reshaped the urban network.The HSR system can be represented as different types of networks in terms of the nodes and various relationships(i.e.,linkages) between them. In this paper, we first introduce a general dual network model, including a physical network(PN)and a logical network(LN) to provide a comparative analysis for China’s high-speed rail network via complex network theory. The PN represents a layout of stations and rail tracks, and forms the basis for operating all trains. The LN is a network composed of the origin and destination stations of each high-speed train and the train flows between them. China’s high-speed railway(CHSR) has different topological structures and link strengths for PN in comparison with the LN. In the study, the community detection is used to analyze China’s high-speed rail networks and several communities are found to be similar to the layout of planned urban agglomerations in China. Furthermore, the hierarchies of urban agglomerations are different from each other according to the strength of inter-regional interaction and intra-regional interaction, which are respectively related to location and spatial development strategies. Moreover, a case study of the Yangtze River Delta shows that the hub stations have different resource divisions and are major contributors to the gap between train departure and arrival flows. 展开更多
关键词 China’s high-speed rail dual network network analysis urban agglomeration
原文传递
Cascading Delays for the High-Speed Rail Network Under Different Emergencies:A Double Layer Network Approach 被引量:1
14
作者 Xingtang Wu Mingkun Yang +3 位作者 Wenbo Lian Min Zhou Hongwei Wang Hairong Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期2014-2025,共12页
High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading del... High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded. 展开更多
关键词 Delay propagation double layer network high speed rail network max-plus algebra
在线阅读 下载PDF
Using multi-class queuing network to solve performance models of e-business sites 被引量:1
15
作者 郑小盈 陈德人 《Journal of Zhejiang University Science》 EI CSCD 2004年第1期31-39,共9页
Due to e-business' s variety of customers with different navigational patterns and demands, multiclass queuing network is a natural performance model for it. The open multi-class queuing network(QN) models are bas... Due to e-business' s variety of customers with different navigational patterns and demands, multiclass queuing network is a natural performance model for it. The open multi-class queuing network(QN) models are based on the assumption that no service center is saturated as a result of the combined loads of all the classes. Several formulas are used to calculate performance measures, including throughput, residence time, queue length, response time and the average number of requests. The solution technique of closed multi-class QN models is an approximate mean value analysis algorithm (MVA) based on three key equations, because the exact algorithm needs huge time and space requirement. As mixed multi-class QN models, include some open and some closed classes, the open classes should be eliminated to create a closed multi-class QN so that the closed model algorithm can be applied. Some corresponding examples are given to show how to apply the algorithms mentioned in this article. These examples indicate that multi-class QN is a reasonably accurate model of e-business and can be solved efficiently. 展开更多
关键词 Queuing network (QN) multi class Performance E business
在线阅读 下载PDF
Evaluation and optimization analysis of high-speed rail network structure in Northeast China under the background of northeast revitalization 被引量:1
16
作者 XU Shaojie WANG Fuyuan WANG Kaiyong 《Regional Sustainability》 2021年第4期349-362,共14页
The construction of high-speed rail(HSR)network has promoted the social-economic ties of cities,accelerated the compression of time and space,and changed the pattern of regional development.In this paper,with the adop... The construction of high-speed rail(HSR)network has promoted the social-economic ties of cities,accelerated the compression of time and space,and changed the pattern of regional development.In this paper,with the adoption of the operation frequency data of HSR from 12306 website,and based on the HSR connection strength model and social network analysis model,as well as according to the HSR connection strength,HSR network density,centrality,agglomeration subgroup,and other indicators,we analyzed the characteristics of HSR network structure in Northeast China.Results show that the number of HSR cities in Northeast China is small,cities in HSR network generally exhibit weak connectivity,and the existence of HSR network marginalizes cities such as Ulanhot,Baicheng,and Songyuan,which significantly reduce the overall network connectivity of Northeast China.The overall centrality of HSR network in Northeast China is characterized by“one axis,four edges”;specifically,the one axis is located in Harbin-Dalian transportation line and the four edges are located on both sides of the main axis of Harbin-Dalian transportation line.Eight agglomeration subgroups(four double city subgroups and four multi city subgroups)have formed in Northeast China.The core status of Shenyang in HSR network is improved significantly,and“one axis and two wings”HSR network in Liaoning Province is improved significantly.With the gradual expansion of Chaoyang-Fuxin,Dandong-Benxi,and Jilin-Yanji branch networks,the“point axis”HSR network mode in Northeast China has gradually developed and matured.In the future,it is recommended to rely on eight agglomerating subgroups to encrypt HSR network structure,create secondary node central cities,and gradually build a new pattern of opening up in Northeast China. 展开更多
关键词 Social network analysis High-speed rail network structure Operation frequency Intercity connection intensity network density analysis Northeast China
在线阅读 下载PDF
Multi-Agent Deep Reinforcement Learning for Cross-Layer Scheduling in Mobile Ad-Hoc Networks 被引量:1
17
作者 Xinxing Zheng Yu Zhao +1 位作者 Joohyun Lee Wei Chen 《China Communications》 SCIE CSCD 2023年第8期78-88,共11页
Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus o... Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus on enabling congestion control to minimize network transmission delays through flexible power control.To effectively solve the congestion problem,we propose a distributed cross-layer scheduling algorithm,which is empowered by graph-based multi-agent deep reinforcement learning.The transmit power is adaptively adjusted in real-time by our algorithm based only on local information(i.e.,channel state information and queue length)and local communication(i.e.,information exchanged with neighbors).Moreover,the training complexity of the algorithm is low due to the regional cooperation based on the graph attention network.In the evaluation,we show that our algorithm can reduce the transmission delay of data flow under severe signal interference and drastically changing channel states,and demonstrate the adaptability and stability in different topologies.The method is general and can be extended to various types of topologies. 展开更多
关键词 Ad-hoc network cross-layer scheduling multi agent deep reinforcement learning interference elimination power control queue scheduling actorcritic methods markov decision process
在线阅读 下载PDF
Detection and Diagnosis of Urban Rail Vehicle Auxiliary Inverter Using Wavelet Packet and RBF Neural Network 被引量:1
18
作者 Guangwu Liu Jing Long +3 位作者 Lingzhi Yang Zhaoyi Su Dechen Yao Xiangli Zhong 《Journal of Intelligent Learning Systems and Applications》 2013年第4期211-215,共5页
This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signa... This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signal, impulsive transient signal and frequency variation signal. In this article, the original signals are decomposed into different frequency subbands by wavelet packet. Next, an automatic feature extraction algorithm is constructed. Finally, those wavelet packet energy eigenvectors are taken as fault samples to train RBF neural network. The result shows that the RBF neural network is effective in the detection and diagnosis of various urban rail vehicle auxiliary inverter faults. 展开更多
关键词 Fault DIAGNOSIS Urban rail Vehicle AUXILIARY Inverter WAVELET PACKET RBF Neural network
暂未订购
Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network 被引量:19
19
作者 ZHANG Jun-hong XIE An-guo SHEN Feng-man 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期1-5,共5页
A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time... A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager. 展开更多
关键词 BP neural network multi-OBJECTIVE OPTIMIZATION SINTER
在线阅读 下载PDF
Rail fastener defect inspection method for multi railways based on machine vision 被引量:3
20
作者 Junbo Liu YaPing Huang +3 位作者 ShengChun Wang XinXin Zhao Qi Zou XingYuan Zhang 《Railway Sciences》 2022年第2期210-223,共14页
Purpose–This research aims to improve the performance of rail fastener defect inspection method for multi railways,to effectively ensure the safety of railway operation.Design/methodology/approach–Firstly,a fastener... Purpose–This research aims to improve the performance of rail fastener defect inspection method for multi railways,to effectively ensure the safety of railway operation.Design/methodology/approach–Firstly,a fastener region location method based on online learning strategy was proposed,which can locate fastener regions according to the prior knowledge of track image and template matching method.Online learning strategy is used to update the template library dynamically,so that the method not only can locate fastener regions in the track images of multi railways,but also can automatically collect and annotate fastener samples.Secondly,a fastener defect recognition method based on deep convolutional neural network was proposed.The structure of recognition network was designed according to the smaller size and the relatively single content of the fastener region.The data augmentation method based on the sample random sorting strategy is adopted to reduce the impact of the imbalance of sample size on recognition performance.Findings–Test verification of the proposed method is conducted based on the rail fastener datasets of multi railways.Specifically,fastener location module has achieved an average detection rate of 99.36%,and fastener defect recognition module has achieved an average precision of 96.82%.Originality/value–The proposed method can accurately locate fastener regions and identify fastener defect in the track images of different railways,which has high reliability and strong adaptability to multi railways. 展开更多
关键词 rail fastener Defects inspection multi railways Image recognition Deep convolutional neural network Machine vision
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部