期刊文献+
共找到43,013篇文章
< 1 2 250 >
每页显示 20 50 100
Model’s parameter sensitivity assessment and their impact on Urban Densification using regression analysis
1
作者 Anasua Chakraborty Mitali Yeshwant Joshi +2 位作者 Ahmed Mustafa Mario Cools Jacques Teller 《Geography and Sustainability》 2025年第2期143-156,共14页
The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for... The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for modelling urban growth to closely reflects reality.Despite extensive research,ambiguity remains about how variations in these input variables influence urban densification.In this study,we conduct a global sensitivity analysis(SA)using a multinomial logistic regression(MNL)model to assess the model’s explanatory and predictive power.We examine the influence of global variables,including spatial resolution,neighborhood size,and density classes,under different input combinations at a provincial scale to understand their impact on densification.Additionally,we perform a stepwise regression to identify the significant explanatory variables that are important for understanding densification in the Brussels Metropolitan Area(BMA).Our results indicate that a finer spatial resolution of 50 m and 100 m,smaller neighborhood size of 5×5 and 3×3,and specific density classes—namely 3(non-built-up,low and high built-up)and 4(non-built-up,low,medium and high built-up)—optimally explain and predict urban densification.In line with the same,the stepwise regression reveals that models with a coarser resolution of 300 m lack significant variables,reflecting a lower explanatory power for densification.This approach aids in identifying optimal and significant global variables with higher explanatory power for understanding and predicting urban densification.Furthermore,these findings are reproducible in a global urban context,offering valuable insights for planners,modelers and geographers in managing future urban growth and minimizing modelling. 展开更多
关键词 Urban densification Sensitivity analysis multinomial logistic regression Stepwise regression
在线阅读 下载PDF
Subgroup Analysis of a Single-Index Threshold Penalty Quantile Regression Model Based on Variable Selection
2
作者 QI Hui XUE Yaxin 《Wuhan University Journal of Natural Sciences》 2025年第2期169-183,共15页
In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This... In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This article considers subgroup analysis methods for longitudinal data containing multiple covariates and biomarkers.We divide subgroups based on whether a linear combination of these biomarkers exceeds a predetermined threshold,and assess the heterogeneity of treatment effects across subgroups using the interaction between subgroups and exposure variables.Quantile regression is used to better characterize the global distribution of the response variable and sparsity penalties are imposed to achieve variable selection of covariates and biomarkers.The effectiveness of our proposed methodology for both variable selection and parameter estimation is verified through random simulations.Finally,we demonstrate the application of this method by analyzing data from the PA.3 trial,further illustrating the practicality of the method proposed in this paper. 展开更多
关键词 longitudinal data subgroup analysis threshold model quantile regression variable selection
原文传递
A logistic-Lasso-regression-based seismic fragility analysis method for electrical equipment considering structural and seismic parameter uncertainty
3
作者 Cui Jiawei Che Ailan +1 位作者 Li Sheng Cheng Yongfeng 《Earthquake Engineering and Engineering Vibration》 2025年第1期169-186,共18页
Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th... Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence. 展开更多
关键词 seismic fragility UNCERTAINTY logistic lasso regression ±1000 kV main transformer sensitivity analysis
在线阅读 下载PDF
Regression analysis of squeezing-induced hybrid nanofluid flow in Darcy-Forchheimer porous medium
4
作者 K.MUHAMMAD M.SARFRAZ 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期193-208,共16页
This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates.One plate remains stationary,while the other moves downward at a squeezing veloci... This article presents a mathematical model addressing a scenario involving a hybrid nanofluid flow between two infinite parallel plates.One plate remains stationary,while the other moves downward at a squeezing velocity.The space between these plates contains a Darcy-Forchheimer porous medium.A mixture of water-based fluid with gold(Au)and silicon dioxide(Si O2)nanoparticles is formulated.In contrast to the conventional Fourier's heat flux equation,this study employs the Cattaneo-Christov heat flux equation.A uniform magnetic field is applied perpendicular to the flow direction,invoking magnetohydrodynamic(MHD)effects.Further,the model accounts for Joule heating,which is the heat generated when an electric current passes through the fluid.The problem is solved via NDSolve in MATHEMATICA.Numerical and statistical analyses are conducted to provide insights into the behavior of the nanomaterials between the parallel plates with respect to the flow,energy transport,and skin friction.The findings of this study have potential applications in enhancing cooling systems and optimizing thermal management strategies.It is observed that the squeezing motion generates additional pressure gradients within the fluid,which enhances the flow rate but reduces the frictional drag.Consequently,the fluid is pushed more vigorously between the plates,increasing the flow velocity.As the fluid experiences higher flow rates due to the increased squeezing effect,it spends less time in the region between the plates.The thermal relaxation,however,abruptly changes the temperature,leading to a decrease in the temperature fluctuations. 展开更多
关键词 convective boundary condition Darcy-Forchheimer medium hybrid nanofuid Joule heating magnetohydrodynamic(MHD) numerical solution squeezing flow regression analysis
在线阅读 下载PDF
Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting 被引量:11
5
作者 Hemant Agrawal A.K.Mishra 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期202-207,共6页
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m... The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%. 展开更多
关键词 Peak particle velocity(PPV) Blast-induced ground vibration Scaled distance regression analysis Wave SUPERIMPOSITION SINGLE-HOLE BLASTING
在线阅读 下载PDF
Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines 被引量:12
6
作者 Leilei Liu Shaohe Zhang +1 位作者 Yung-Ming Cheng Li Liang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期671-682,共12页
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl... This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs. 展开更多
关键词 Slope stability Efficient reliability analysis Spatial variability Random field multivariate adaptive regression splines Monte Carlo simulation
在线阅读 下载PDF
Stability of mine ventilation system based on multiple regression analysis 被引量:14
7
作者 JIA Ting-gui LIU Jian 《Mining Science and Technology》 EI CAS 2009年第4期463-466,共4页
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre... In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems. 展开更多
关键词 ventilation network STABILITY diagonal connection multiple regression analysis
在线阅读 下载PDF
Multiple regression analysis of risk factors related to radiation pneumonitis 被引量:4
8
作者 Ling-Ling Shi Jiang-Hua Yang Hong-Fa Yao 《World Journal of Clinical Cases》 SCIE 2023年第5期1040-1048,共9页
BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression an... BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis. 展开更多
关键词 Radiation pneumonitis Influencing factors RADIOTHERAPY multiple regression analysis
暂未订购
New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis 被引量:6
9
作者 Farhadian Hadi Katibeh Homayoon 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期415-421,共7页
There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ... There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels. 展开更多
关键词 Groundwater inflow Analytical equation multiple regression analysis Stepwise algorithm Tunnel
在线阅读 下载PDF
Multiple Nonlinear Regression Analysis for the Stability of Non-overtopping Perforated Quarter Circle Breakwater 被引量:1
10
作者 S.Binumol Subba Rao Arkal Vittal Hegde 《Journal of Marine Science and Application》 CSCD 2020年第2期293-300,共8页
Breakwaters have been built throughout the centuries for the coastal protection and the port development,but changes occurred in their layout and criteria used for the design.Quarter circle breakwater(QBW)is a new typ... Breakwaters have been built throughout the centuries for the coastal protection and the port development,but changes occurred in their layout and criteria used for the design.Quarter circle breakwater(QBW)is a new type evolved having advantages of both caisson type and perforated type breakwaters.The present study extracts the effect of change in the percentage of perforations on the stable conditions of seaside perforated QBW by using various physical models.The results were graphically analyzed using dimensionless parameters and it was concluded that there is a reduction in dimensionless stability parameter with an increase in steepness of the wave and change in water depth to the height of breakwater structure.Multiple non–linear regression analysis was done and the equation for the best fit curve with a higher regression coefficient was obtained by using Excel statistical software—XLSTAT. 展开更多
关键词 BREAKWATER PERFORATIONS regression analysis STABILITY Wave steepness Water depth
在线阅读 下载PDF
Prediction of cavity growth rate during underground coal gasification using multiple regression analysis 被引量:11
11
作者 Mehdi Najafi Seyed Mohammad Esmaiel Jalali +1 位作者 Reza KhaloKakaie Farrokh Forouhandeh 《International Journal of Coal Science & Technology》 EI 2015年第4期318-324,共7页
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by... During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR. 展开更多
关键词 Underground coal gasification (UCG) - Cavity growth rate . multiple regression analysis ~ Empirical model
在线阅读 下载PDF
Research on the Effect of Artificial Intelligence Real Estate Forecasting Using Multiple Regression Analysis and Artificial Neural Network: A Case Study of Ghana 被引量:2
12
作者 Madami Michael Ishaku Hill Isaac Lewu 《Journal of Computer and Communications》 2021年第10期1-14,共14页
To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financi... To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financial, economic, and investment sectors, few artificial intelligence-based research has tried to predict the auction values of real estate in the past. According to the objectives of this research, artificial intelligence and statistical methods will be used to create forecasting models for real estate auction prices. A multiple regression model and an artificial neural network are used in conjunction with one another to build the forecasting models. For the empirical study, the study utilizes data from Ghana apartment auctions from 2016 to 2020 to anticipate auction prices and evaluate the forecasting accuracy of the various models available at the time. Compared to the conventional Multiple Regression Analysis, using artificial intelligence systems for real estate appraisal is becoming a more viable option (MRA). The Artificial Neural network model exhibits the most outstanding performance, and efficient zonal segmentation based on the auction evaluation price enhances the model’s prediction accuracy even more. There is a statistically significant difference between the two models when it comes to forecasting the values of real estate auctions. 展开更多
关键词 Real Estate Forecasting Artificial Intelligence Artificial Neural Networks multiple regression analysis
在线阅读 下载PDF
COX MULTIVARIATE REGRESSION ANALYSIS OF RECURRENCE FACTORS FOR COLONIC CARCINOMA
13
作者 杜寒松 王国斌 +2 位作者 秦青平 夏玉春 司徒光伟 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2004年第4期274-278,共5页
Objective: To determine the independent prognostic factors in the recurrence of colonic carcinoma after curative resection. Methods: Two hundred and one patients undergoing curative resections for colonic carcinoma we... Objective: To determine the independent prognostic factors in the recurrence of colonic carcinoma after curative resection. Methods: Two hundred and one patients undergoing curative resections for colonic carcinoma were investigated by univariate and Cox multivariate regression analyses. Ten factors contributed to the rate were analyzed. Results: Dukes stages, obstruction, postoperative chemotherapy as well as the growth manner of the tumor were significantly associated with the recurrence rate of colonic carcinoma (P<0.05) by univariate analysis, while Dukes stages, obstruction, and postoperative chemotherapy were significant factors by the multivariate analysis. Conclusion: Dukes stages, obstruction, and postoperative chemotherapy are independent prognostic factors in the recurrence of colonic carcinoma. 展开更多
关键词 Cox multivariate regression analysis Recurrence factors Colonic carcinoma DIAGNOSIS
暂未订购
Factors Affecting Minimum Foot Clearance in the Elderly Walking: A Multiple Regression Analysis
14
作者 Keizo Sato 《Open Journal of Therapy and Rehabilitation》 2015年第4期109-115,共7页
Because falls among the elderly can cause serious injury leading to a bedridden state, methods to maintain motor function in the elderly and prevent falls are important. Among falls by the elderly are tripping falls, ... Because falls among the elderly can cause serious injury leading to a bedridden state, methods to maintain motor function in the elderly and prevent falls are important. Among falls by the elderly are tripping falls, in which the forefoot gets caught on the floor to cause the fall. Minimum foot clearance (MFC), the smallest distance between the floor and the foot during the swing phase of gait, has been given attention as a cause of tripping falls, as elderly people at risk of falling have been reported to have low MFC. No research has been done, however, to examine what geriatric factors determine MFC. In this study, various measurements were taken on muscle strength, joint angles, and other characteristics as factors possibly influencing the height of MFC, a multiple regression analysis was performed with MFC as the dependent variable, and those factors with high degrees of influence were extracted. The results revealed that the height of MFC is highly influenced by strength of the hip flexors and angle of ankle dorsiflexion. The results of this study should be taken into consideration when having elderly people do fall prevention training. 展开更多
关键词 Eldery FALL PREVENTION Minimum FOOT CLEARANCE multiple regression analysis
暂未订购
Modeling the Drilling Process of Aluminum Composites Using Multiple Regression Analysis and Artificial Neural Networks
15
作者 Ahmad Mayyas Awni Qasaimeh +3 位作者 Khalid Alzoubi Susan Lu Mohammed T. Hayajneh Adel M. Hassan 《Journal of Minerals and Materials Characterization and Engineering》 2012年第10期1039-1049,共11页
In recent years, aluminum-matrix composites (AMCs) have been widely used to replace cast iron in aerospace and automotive industries. Machining of these composite materials requires better understanding of cutting pro... In recent years, aluminum-matrix composites (AMCs) have been widely used to replace cast iron in aerospace and automotive industries. Machining of these composite materials requires better understanding of cutting processes re- garding accuracy and efficiency. This study addresses the modeling of the machinability of self-lubricated aluminum /alumina/graphite hybrid composites synthesized by the powder metallurgy method. In this study, multiple regression analysis (MRA) and artificial neural networks (ANN) were used to investigate the influence of some parameters on the thrust force and torque in the drilling processes of self-lubricated hybrid composite materials. The models were identi- fied by using cutting speed, feed, and volume fraction of the reinforcement particles as input data and the thrust force and torque as the output data. A comparison between two prediction methods was developed to compare the prediction accuracy. ANNs showed better predictability results compared to MRA due to the nonlinearity nature of ANNs. The statistical analysis accompanied with artificial neural network results showed that Al2O3, Gr and cutting feed (f) were the most significant parameters on the drilling process, while spindle speed seemed insignificant. Since the spindle speed was insignificant, it directed us to set it either at the highest spindle speed to obtain high material removal rate or at the lowest spindle speed to prolong the tool life depending on the need for the application. 展开更多
关键词 Artificial Neural Network Metal-Matrix Composites (MMCs) multiple regression analysis STATISTICAL Methods MACHINING
暂未订购
Predicting urbanization level by main element analysis and multiple linear regression---taking Xiantao district in Hubei Province as an example
16
作者 Li BingyiDepartment of Urban Planning & Architecture, Wuhan Urban Construction Institute,Wuhan 430074, CHINA 《Journal of Geographical Sciences》 SCIE CSCD 1998年第1期90-91,93-94,共4页
In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and l... In this paper we firstly select main factors relating to urbanization level of Xiantao District in Hubei Province by main element, then, make model of urbanization level by analysis of multiple liner regression, and lastly predict its urbanization level 展开更多
关键词 urbanization level main element analysis multiple linear regression Xiantao Hubei PROVINCE
在线阅读 下载PDF
Multiple Regression Analysis of Influencing Factors on Yield of New Sugarcane Variety Yuetang 03-373
17
作者 Fangyin PAN Fuye LIU +1 位作者 Mingfu WEN Qingwen LUO 《Asian Agricultural Research》 2020年第5期47-49,共3页
[Objectives]The purpose of this study was to provide reference for cultivation and promotion of a new sugarcane variety Yuetang 03-373,on the basis of analyzing and summarizing the characters of the variety.[Methods]C... [Objectives]The purpose of this study was to provide reference for cultivation and promotion of a new sugarcane variety Yuetang 03-373,on the basis of analyzing and summarizing the characters of the variety.[Methods]Correlation,multiple regression and path analyses were performed for the yield and yield components of Yuetang 03-373.[Results]Correlation analysis shows that cane yield was significantly correlated with millable stalk number,stalk length and stalk diameter,and among them,the correlation with millable stalk number was the strongest.Multiple regression and path analyses show that millable stalk number contributed the most to cane yield,followed by stalk length,and stalk diameter contributed the least.The regression equation of cane yield against the three yield components was y=-2.8713+1.5497x1+5.8990x2-395.4294x3(R=0.9672**).[Conclusions]Millable stalk number and stalk length were the important and major factors for high yield of Yuetang 03-373,indicating that Yuetang 03-373 is a sugarcane variety of millable stalk type.In cultivation,full play should be given to the advantage of Yuetang 03-373 in millable stalk number,as well as stalk length(plant height),in order to achieve the purpose of increasing yield. 展开更多
关键词 Yuetang 03-373 Yield traits Correlation analysis multiple regression analysis
在线阅读 下载PDF
Application of cluster analysis and stepwise regression in predicting the traffic volume of lanes 被引量:5
18
作者 张赫 王炜 顾怀中 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期359-362,共4页
Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections... Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections,cluster analysis and stepwise regression are integrated to predict the traffic volume of lanes at non-detector isolated controlled intersections.First cluster analysis is used to cluster the lanes of non-detector isolated signal-controlled intersections and the lanes of all signal-controlled intersections with detectors.Then, by the results of cluster analysis,the traffic volume samples are selected randomly and stepwise regression is used to predict the traffic volume of lanes at non-detector isolated signal-controlled intersections.The method is tested by the traffic volume data of lanes of the road network of Nanjing city.The problem of predicting the traffic volume of lanes at non-detector isolated signal-controlled intersections was resolved and can be widely used in urban traffic flow guidance and urban traffic control in cities without enough intersections equipped with detectors. 展开更多
关键词 intelligent transportation systems (ITS) cluster analysis stepwise regression
在线阅读 下载PDF
PARTIAL LEAST-SQUARES(PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES
19
作者 Xin An LIU Le Ming SHI +4 位作者 Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Ying GAO Laboratory No.502,Institute of Chemical Defense,Beijing 102205 Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期233-236,共4页
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit... The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively. 展开更多
关键词 PLS)regression AND SPECTROPHOTOMETRY AS APPLIED TO THE analysis OF multiCOMPONENT MIXTURES PARTIAL LEAST-SQUARES AS
在线阅读 下载PDF
Population Quantity Variations of Oriental Fruit Fly (Bactrocera dorsalis Hendel) on the Basis of Stepwise Regression Analysis
20
作者 张丽莲 杨林楠 杨仕生 《Plant Diseases and Pests》 CAS 2010年第2期32-34,共3页
[Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental frui... [Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental fruit fly in Jianshui County of Yunnan province and the meteorological factors that caused its occurrence were analyzed. And the regression model was built. Finally, the regression model was tested on the basis of the data in Jianshui County of Yunnan Province during 2004-2006.[Result] The main meteorological factors that influenced the occurrence of oriental fruit fly were relative humidity, the lowest monthly temperature and rainfall. [Conclusion] This study will provide certain reference for the prediction researches on the time, quantity and occurrence peak of oriental fruit fly. 展开更多
关键词 Oriental fruit fly Stepwise regression analysis Meteorological factors
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部