Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path ...Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path planning strategy is a very important subject concerning to the performance and intelligence degree of the multi robot system. Therefore, this paper studies the path planning strategy of soccer system by using fuzzy logic. After setting up two fuzziers and two sorts of fuzzy rules for soccer system, fuzzy logic is applied to workspace partition and path revision. The experiment results show that this technique can well enhance the performance and intelligence degree of the system.展开更多
An approach based on fuzzy logic for matching both articulated and non-articulated objects across multiple non-overlapping field of views (FoVs) from multiple cameras is proposed. We call it fuzzy logic matching algor...An approach based on fuzzy logic for matching both articulated and non-articulated objects across multiple non-overlapping field of views (FoVs) from multiple cameras is proposed. We call it fuzzy logic matching algorithm (FLMA). The approach uses the information of object motion, shape and camera topology for matching objects across camera views. The motion and shape information of targets are obtained by tracking them using a combination of ConDensation and CAMShift tracking algorithms. The information of camera topology is obtained and used by calculating the projective transformation of each view with the common ground plane. The algorithm is suitable for tracking non-rigid objects with both linear and non-linear motion. We show videos of tracking objects across multiple cameras based on FLMA. From our experiments, the system is able to correctly match the targets across views with a high accuracy.展开更多
Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because th...Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.展开更多
This paper discusses the best affine approach (BAA) of multi-output m-valued logical functions. First, it gives the spectra of rate of accordance between multi-output m-valued logical functions and their affine func...This paper discusses the best affine approach (BAA) of multi-output m-valued logical functions. First, it gives the spectra of rate of accordance between multi-output m-valued logical functions and their affine functions, then analyzes the BAA of multi-output m-valued logical functions and finally gives the spectral characteristics of BAA of multi-output m-valued logical functions.展开更多
In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for ...In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (ML...Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.展开更多
Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to me...Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to meet the actual situation. Thus, non-probabilistic reliability index is presented by comparing with the output range and the given range.展开更多
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
Despite half a century of fuzzy sets and fuzzy logic progress, as fuzzy sets address complex and uncertain information through the lens of human knowledge and subjectivity, more progress is needed in the semantics of ...Despite half a century of fuzzy sets and fuzzy logic progress, as fuzzy sets address complex and uncertain information through the lens of human knowledge and subjectivity, more progress is needed in the semantics of fuzzy sets and in exploring the multi-modal aspect of fuzzy logic due to the different cognitive, emotional and behavioral angles of assessing truth. We lay here the foundations of a postmodern fuzzy set and fuzzy logic theory addressing these issues by deconstructing fuzzy truth values and fuzzy set membership functions to re-capture the human knowledge and subjectivity structure in membership function evaluations. We formulate a fractal multi-modal logic of Kabbalah which integrates the cognitive, emotional and behavioral levels of humanistic systems into epistemic and modal, deontic and doxastic and dynamic multi-modal logic. This is done by creating a fractal multi-modal Kabbalah possible worlds semantic frame of Kripke model type. The Kabbalah possible worlds semantic frame integrates together both the multi-modal logic aspects and their Kripke possible worlds model. We will not focus here on modal operators and axiom sets. We constructively define a fractal multi-modal Kabbalistic L-fuzzy set as the central concept of the postmodern fuzzy set theory based on Kabbalah logic and semantics.展开更多
Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river...Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.展开更多
This paper describes the development and modeling of a remotely operated scaled multi-wheeled combat vehicle(ROMWCV)using system identification methodology for heading angle tracking.The vehicle was developed at the v...This paper describes the development and modeling of a remotely operated scaled multi-wheeled combat vehicle(ROMWCV)using system identification methodology for heading angle tracking.The vehicle was developed at the vehicle dynamics and crash research(VDCR)Lab at the University of Ontario Institute of Technology(UOIT)to analyze the characteristics of the full-size model.For such vehicles,the development of controllers is considered the most crucial issue.In this paper,the ROMWCV is developed first.An experimental test was carried out to record and analyze the vehicle input/output signals in open loop system,which is considered a multi-input-single-output(MISO)system.Subsequently,a fuzzy logic controller(FLC)was developed for heading angle tracking.The experiments showed that it was feasible to represent the dynamic characteristics of the vehicle using the system identification technique.The estimation and validation results demonstrated that the obtained identified model was able to explain 88.44%of the output variation.In addition,the developed FLC showed a good heading angle tracking.展开更多
Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent impreci...Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent imprecise, vague or incomplete descriptions, which are very common in the management of subjective information. Aggregation methods proposed by fuzzy logic are further useful to combine the characteristics of the various components of sensorial information.展开更多
Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high...Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.展开更多
This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,f...This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning.展开更多
We present two recent methods,called UTAGMS and GRIP,from the viewpoint of robust ranking of multi-criteria alternatives.In these methods,the preference information provided by a single or multiple Decision Makers(DMs...We present two recent methods,called UTAGMS and GRIP,from the viewpoint of robust ranking of multi-criteria alternatives.In these methods,the preference information provided by a single or multiple Decision Makers(DMs)is composed of holistic judgements of some selected alternatives,called reference alternatives.The judgements express pairwise comparisons of some reference alternatives(in UTAGMS),and comparisons of selected pairs of reference alternatives from the viewpoint of intensity of preference(in GRIP).Ordinal regression is used to find additive value functions compatible with this preference information.The whole set of compatible value functions is then used in Linear Programming(LP)to calculate a necessary and possible weak preference relations in the set of all alternatives,and in the set of all pairs of alternatives.While the necessary relation is true for all compatible value functions,the possible relation is true for at least one compatible value function.The necessary relation is a partial preorder and the possible relation is a complete and negatively transitive relation.The necessary relations show consequences of the given preference information which are robust because "always true".We illustrate this methodology with an example.展开更多
An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the conv...An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.展开更多
In this study, a novel procedure is presented for control and analysis of a group of autonomous agents with point mass dynamics achieving flocking motion by using a fuzzy-logic-based attractive/repulsive function. Two...In this study, a novel procedure is presented for control and analysis of a group of autonomous agents with point mass dynamics achieving flocking motion by using a fuzzy-logic-based attractive/repulsive function. Two cooperative control laws are proposed for a group of autonomous agents to achieve flocking formations related to two different centers (mass center and geometric center) of the flock. The first one is designed for flocking motion guided at mass center and the other for geometric center. A virtual agent is introduced to represent a group objective for tracking purposes. Smooth graph Laplacian is introduced to overcome the difficulties in theoretical analysis. A new fuzzy-logic-based attractive/repulsive function is proposed for separation and cohesion control among agents. The theoretical results are presented to indicate the stability (separation, collision avoidance and velocity matching) of the control systems. Finally, simulation example is demonstrated to validate the theoretical results.展开更多
文摘Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path planning strategy is a very important subject concerning to the performance and intelligence degree of the multi robot system. Therefore, this paper studies the path planning strategy of soccer system by using fuzzy logic. After setting up two fuzziers and two sorts of fuzzy rules for soccer system, fuzzy logic is applied to workspace partition and path revision. The experiment results show that this technique can well enhance the performance and intelligence degree of the system.
文摘An approach based on fuzzy logic for matching both articulated and non-articulated objects across multiple non-overlapping field of views (FoVs) from multiple cameras is proposed. We call it fuzzy logic matching algorithm (FLMA). The approach uses the information of object motion, shape and camera topology for matching objects across camera views. The motion and shape information of targets are obtained by tracking them using a combination of ConDensation and CAMShift tracking algorithms. The information of camera topology is obtained and used by calculating the projective transformation of each view with the common ground plane. The algorithm is suitable for tracking non-rigid objects with both linear and non-linear motion. We show videos of tracking objects across multiple cameras based on FLMA. From our experiments, the system is able to correctly match the targets across views with a high accuracy.
基金National Natural Science Foundation of China(No.61164009)the Science and Technology Research Project,Department of Education of Jiangxi Province,China(No.GJJ14420)Natural Science Foundation of Jiangxi Province,China(No.20132BAB206026)
文摘Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.
基金Supported by the Opening Research Foundation of the State Key Laboratory of Information Security (2005-01-02)
文摘This paper discusses the best affine approach (BAA) of multi-output m-valued logical functions. First, it gives the spectra of rate of accordance between multi-output m-valued logical functions and their affine functions, then analyzes the BAA of multi-output m-valued logical functions and finally gives the spectral characteristics of BAA of multi-output m-valued logical functions.
文摘In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
文摘Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.
基金the Key Scientific Research Fund Project of Xihua University(No.Z1320406)the National Natural Science Foundation of China(No.51379179)
文摘Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to meet the actual situation. Thus, non-probabilistic reliability index is presented by comparing with the output range and the given range.
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
文摘Despite half a century of fuzzy sets and fuzzy logic progress, as fuzzy sets address complex and uncertain information through the lens of human knowledge and subjectivity, more progress is needed in the semantics of fuzzy sets and in exploring the multi-modal aspect of fuzzy logic due to the different cognitive, emotional and behavioral angles of assessing truth. We lay here the foundations of a postmodern fuzzy set and fuzzy logic theory addressing these issues by deconstructing fuzzy truth values and fuzzy set membership functions to re-capture the human knowledge and subjectivity structure in membership function evaluations. We formulate a fractal multi-modal logic of Kabbalah which integrates the cognitive, emotional and behavioral levels of humanistic systems into epistemic and modal, deontic and doxastic and dynamic multi-modal logic. This is done by creating a fractal multi-modal Kabbalah possible worlds semantic frame of Kripke model type. The Kabbalah possible worlds semantic frame integrates together both the multi-modal logic aspects and their Kripke possible worlds model. We will not focus here on modal operators and axiom sets. We constructively define a fractal multi-modal Kabbalistic L-fuzzy set as the central concept of the postmodern fuzzy set theory based on Kabbalah logic and semantics.
文摘Increasing demand for water from all sectors presents a challenge for policy makers to improve water allocation policies for storage reservoirs. In addition, there are many other organisms and species present in river waters that also require water for their survival. Due to the lack of awareness many times the minimum required quantity and quality of water for river ecosystem is not made available at downstream of storage reservoirs. So, a sustainable approach is required in reservoir operations to maintain the river ecosystem with environmental flow while meeting the other demands. Multi-objective, multi-reservoir operation model developed with Python programming using Fuzzy Linear Programing method incorporating environmental flow requirement of river is presented in this paper. Objective of maximization of irrigation release is considered for first run. In second run maximization of releases for hydropower generation is considered as objective. Further both objectives are fuzzified by incorporating linear membership function and solved to maximize fuzzified objective function simultaneously by maximizing satisfaction level indicator (λ). The optimal reservoir operation policy is presented considering constraints including Irrigation release, Turbine release, Reservoir storage, Environmental flow release and hydrologic continuity. Model applied for multi-reservoir system consists of four reservoirs, i.e., Jayakwadi Stage-I Reservoir (R1), Jayakwadi Stage-II Reservoir (R2), Yeldari Reservoir (R3), Siddheshwar Reservoir (R4) in Godavari River sub-basin from Marathwada region of Maharashtra State, India.
基金the Egyptian Armed Forces for the financial support extended to the undergraduate and graduate students of the Vehicle Dynamics and Crash Research (VDCR) Laboratory for operating the vehicle during the experimental tests
文摘This paper describes the development and modeling of a remotely operated scaled multi-wheeled combat vehicle(ROMWCV)using system identification methodology for heading angle tracking.The vehicle was developed at the vehicle dynamics and crash research(VDCR)Lab at the University of Ontario Institute of Technology(UOIT)to analyze the characteristics of the full-size model.For such vehicles,the development of controllers is considered the most crucial issue.In this paper,the ROMWCV is developed first.An experimental test was carried out to record and analyze the vehicle input/output signals in open loop system,which is considered a multi-input-single-output(MISO)system.Subsequently,a fuzzy logic controller(FLC)was developed for heading angle tracking.The experiments showed that it was feasible to represent the dynamic characteristics of the vehicle using the system identification technique.The estimation and validation results demonstrated that the obtained identified model was able to explain 88.44%of the output variation.In addition,the developed FLC showed a good heading angle tracking.
文摘Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent imprecise, vague or incomplete descriptions, which are very common in the management of subjective information. Aggregation methods proposed by fuzzy logic are further useful to combine the characteristics of the various components of sensorial information.
文摘Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.
文摘This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning.
文摘We present two recent methods,called UTAGMS and GRIP,from the viewpoint of robust ranking of multi-criteria alternatives.In these methods,the preference information provided by a single or multiple Decision Makers(DMs)is composed of holistic judgements of some selected alternatives,called reference alternatives.The judgements express pairwise comparisons of some reference alternatives(in UTAGMS),and comparisons of selected pairs of reference alternatives from the viewpoint of intensity of preference(in GRIP).Ordinal regression is used to find additive value functions compatible with this preference information.The whole set of compatible value functions is then used in Linear Programming(LP)to calculate a necessary and possible weak preference relations in the set of all alternatives,and in the set of all pairs of alternatives.While the necessary relation is true for all compatible value functions,the possible relation is true for at least one compatible value function.The necessary relation is a partial preorder and the possible relation is a complete and negatively transitive relation.The necessary relations show consequences of the given preference information which are robust because "always true".We illustrate this methodology with an example.
文摘An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.
文摘In this study, a novel procedure is presented for control and analysis of a group of autonomous agents with point mass dynamics achieving flocking motion by using a fuzzy-logic-based attractive/repulsive function. Two cooperative control laws are proposed for a group of autonomous agents to achieve flocking formations related to two different centers (mass center and geometric center) of the flock. The first one is designed for flocking motion guided at mass center and the other for geometric center. A virtual agent is introduced to represent a group objective for tracking purposes. Smooth graph Laplacian is introduced to overcome the difficulties in theoretical analysis. A new fuzzy-logic-based attractive/repulsive function is proposed for separation and cohesion control among agents. The theoretical results are presented to indicate the stability (separation, collision avoidance and velocity matching) of the control systems. Finally, simulation example is demonstrated to validate the theoretical results.