During the initial impoundment period of a canyon-shaped reservoir,the water body fluctuated violently regarding water level,hydrological condition,and thermal stratification.These variations may alter the structure o...During the initial impoundment period of a canyon-shaped reservoir,the water body fluctuated violently regarding water level,hydrological condition,and thermal stratification.These variations may alter the structure of phytoplankton community,resulting in algal blooms and seriously threatening the ecological security of the reservoir.It is of great significance to understand the continuous changes of phytoplankton in the initial impoundment period for the protection of reservoir water quality.Therefore,a two-year in-situ monitoring study was conducted on water quality and phytoplankton in a representative canyonshaped reservoir named Sanhekou and the interannual changes of phytoplankton community and its response to environmental changes during the initial impoundment period were discussed at taxonomic versus functional classification levels.The results showed that the total nitrogen and permanganate index levels were relatively high in the first year due to rapid water storage and heavy rainfall input,and the more stable hydrological conditions in the second year promoted the increase of algae density and the transformation of community,and the proportion of cyanobacteria increased significantly.The succession order of phytoplankton in the first year of the initial impoundment periodwas Chlorophyta-Bacillariophyta-Chlorophyta,or J/F/X1-P/MP/W1-A/X1/MP,respectively.And the succession order in the second year was Cyanobacteria/Chlorophyta-Bacillariophyta-Chlorophyta,or L_(M)/G/P-P/A/X1-X1/J/G.Water temperature,relativewater column stability,mixing depth,and pHwere crucial factors affecting phytoplankton community succession.This study revealed the interannual succession law and driving factors of phytoplankton in the initial impoundment period and provided an important reference for the operation management and ecological protection of canyon-shaped reservoirs.展开更多
As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC...As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC)were synthesized as CDI electrode material for removing Na^(+)and Cl^(−)in salty water.Results showed that the average diameter of HC was approximately 180 nm,and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups,respectively.The sulfonic acid functionalized HC(HC-S)showed better electrochemical and desalting performance than the amino-functionalized HC(HC–N),with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl.Additionally,92.63%capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S.The main findings prove that HC-S is viable as an electrodematerial for desalination by high-performance CDI applications.展开更多
Taking the Lower Silurian Longmaxi Formation shale in the Sichuan Basin as an example,this study employs atomic force microscopy-based infrared(AFM-IR)spectroscopy to analyze the submicron-scale molecular functional g...Taking the Lower Silurian Longmaxi Formation shale in the Sichuan Basin as an example,this study employs atomic force microscopy-based infrared(AFM-IR)spectroscopy to analyze the submicron-scale molecular functional groups of different types and occurrences of organic matter.Combined with the quantitative evaluation of pore development via scanning electron microscopy(SEM),the response of organic pore formation and evolution mechanisms to chemical composition and structural evolution of organic matter in overmature marine shale is investigated.The results indicate that the AFM-IR spectra of graptolite periderms and pyrobitumen in shale are dominated by the stretching vibrations of conjugated C=C bonds in aromatic compounds at approximately 1600 cm-1,with weak absorption peaks near 1375,1450 and 1720 cm-1,corresponding to aliphatic chains and carbonyl/carboxyl functional groups.Overall,the AFM-IR structural indices(A and C factors)of organic matter show a strong correlation with visible porosity in shales of equivalent maturity.Lower A and C factor values correlate with enhanced development of organic pores,which is associated with the detachment of more aliphatic chains and oxygen-containing functional groups during thermal evolution.Pyrobitumen-clay mineral composites generally exhibit superior pore development,likely attributable to clay mineral dehydration participating in hydrocarbon generation reactions that promote the removal of more functional groups.Additionally,hydrocarbon generation within organic-clay composites during high-over mature stages may induce volumetric expansion,resulting in microfracturing and hydrocarbon expulsion.The associated higher hydrocarbon expulsion rates promote the formation of larger pores and fracture-shaped pores along the flake-shaped clay minerals.This study highlights that the research of submicron-scale molecular functional groups provides a deeper understanding of organic matter evolution and pores development mechanisms in overmature shales,thereby offering critical theoretical parameters for reservoir evaluation in shale oil and gas exploration.展开更多
Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups in...Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.展开更多
The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundan...The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundance of hydrocarbon compounds,and the potential for late-stage functionalization of complex organic molecules.The ortho-and meta-C-H activation and functionalization of aromatic compounds have been widely explored in recent years,however the distal para-C-H activation and functionalization has remained a significant challenge because of the difficulty in forming energetically favorable metallacyclic transition states.The utilization of appropriate directing groups or templates as well as the meticulous design of catalysts and ligands has proven to be effective in transition-metal-catalyzed remote para-C-H bonds activation and functionalization of aromatic compounds.This review aims to summarize the strategies for controlling para-selective C–H functionalization using the directing group,template engineering,and catalyst/ligand design under transition metals catalysis in recent years.展开更多
Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approa...Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approach to deconstruct and mimic these residues using synthetic homopolymers and random copolymers with phenyl,amino,carboxyl,and hydroxyl functional groups using reversible addition-fragmentation chain transfer(RAFT)polymerization.The resulting polymers,designed with comparable molecular weights(M_(n):10–20 kDa)and narrow dispersities(PDI<1.3),mimic the diverse surface chemistry of amyloid-like proteins,enabling systematic investigation of their adhesive properties.The interfacial adhesion forces of different polymer films were quantified using atomic force microscopy(AFM)with a colloidal probe.Remarkably copolymers with multiple functional groups demonstrated significantly enhanced adhesion compared to homopolymers,a trend corroborated by macroscopic shear strength and stability tests.These results highlight that the synergistic effects of multiple functional groups are crucial for achieving universal interfacial adhesion of macromolecules,offering insights into protein adhesion mechanisms,and guiding polymer-based interfacial modifications.展开更多
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
Anthropogenic disturbances are widespread in tropical forests and influence the species composition in the overstory.However,the impacts of historical disturbance on tropical forest overstory recovery are unclear due ...Anthropogenic disturbances are widespread in tropical forests and influence the species composition in the overstory.However,the impacts of historical disturbance on tropical forest overstory recovery are unclear due to a lack of disturbance data,and previous studies have focused on understory species.In this study,the purpose was to deter-mine the influence of historical disturbance on the diver-sity,composition and regeneration of overstory species in present forests.In the 20-ha Xishuangbanna tropical sea-sonal rainforest dynamics plot in southwestern China,the historical disturbance boundaries were delineated based on panchromatic photographs from 1965.Factors that drove species clustering in the overstory layer(DBH≥40 cm)were analyzed and the abundance,richness and composition of these species were compared among different tree groups based on multiple regression tree analysis.The coefficient of variation of the brightness value in historical panchro-matic photographs from 1965 was the primary driver of spe-cies clustering in the overstory layer.The abundance and richness of overstory species throughout the regeneration process were similar,but species composition was always different.Although the proportion of large-seeded and vigorous-sprouting species showed no significant differ-ence between disturbed and undisturbed forests in the tree-let layer(DBH<20 cm),the difference became significant when DBH increased.The findings highlight that historical disturbances have strong legacy effects on functional group composition in the overstory and the recovery of overstory species was multidimensional.Functional group composi-tion can better indicate the dynamics of overstory species replacement during secondary succession.展开更多
To understand the distribution of phytoplankton functional groups(PFGs)and key factors on their compositions in different watersheds of the Huanghe(Yellow)River basin,25 river sites and 25 lake-reservoirs sites were s...To understand the distribution of phytoplankton functional groups(PFGs)and key factors on their compositions in different watersheds of the Huanghe(Yellow)River basin,25 river sites and 25 lake-reservoirs sites were selected.The contents of nephelometric turbidity(NTU),total nitrogen(TN),and total phosphorus(TP)were significantly higher in rivers than that in lakes or reservoirs,whereas the pH and CODMn(chemical oxygen demand or potassium permanganate index)were lower.Results show that,27 PFGs,namely,assemblages A,B,C,D,E,F,G,H,J,K,LM,Lo,M,MP,N,P,S1,S2,T,TC,W1,W2,X1,X2,X3,XPh,and Y,were identified.Additionally,ANOSIM correlation analysis demonstrated significant differences in PFG composition between the riverine and lake-reservoir sections in the Huanghe River basin.In the riverine watersheds,the group MP was dominant,while assemblages B and J were prevalent in lakes and reservoirs.The Mantel correlation tests and RDA analysis showed that environmental variables,such as NTU,water temperature(WT),conductivity(Cond),and TP,were key driving factors of shaping the dominant PFGs of the study area.Using the Venn diagram based on variation partitioning analysis,PFGs were mainly influenced by WT and TP in lake-reservoir sites,while in the river sites were affected mainly by geo-climatic variables.This study helps understanding the PFGs in river ecosystems,and unraveling the key driving factors in different watersheds,which shall be important for the protection and management of entire Huanghe River basin.展开更多
The education and management of college student Party members is the focus of student Party building work in colleges and universities.In the context of students second classroom being conducted in the academy,the man...The education and management of college student Party members is the focus of student Party building work in colleges and universities.In the context of students second classroom being conducted in the academy,the management of student Party members should enhance their Party spirit cultivation through improving their self-management and self-monitoring.After the comprehensive reform of Ningxia University,Runze College targeted the characteristics of agricultural majors and set up functional Party groups to enable student Party members to play a pioneering and exemplary role in the second classroom.Runze College relies on the academy system and breaks through the traditional one-way management mode led by Party branch teachers in the second classroom of college students.It leverages the role of functional Party groups in off campus science and technology academies,and integrates Party building work into daily teaching and research and solving agricultural production technology problems for local villagers,achieving the goal of promoting and integrating Party building and business work,and improving each other.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a s...Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a shift in the phytoplankton community.Spring diatom blooms in reservoirs have been increasingly observed in the past decade in the Taihu Lake basin.The aim of the present study is to elucidate the impacts of droughts on aquatic environment and to determine the driving factors for the succession of the phytoplankton functional groups based on the analysis of data collected during spring from 2009 to 2020 in the Daxi Reservoir.The unimodal relationship between 1-month aggregated precipitation index and phytoplankton species richness indicated the competitive exclusion occurred in extremely drought period.The structural equation modeling indicated that drought-related low water level conditions intensified sediment resuspension,and increased the phosphorus-enriched nonalgal turbidity in the Daxi Reservoir.Concurrently,a steady shift in the Reynolds phytoplankton functional groups from L 0,TD,J,X 2,and A(phytoplankton taxa preferring low turbidity and nutrient conditions)to TB(pennate diatoms being adapt to turbid and nutrient-rich conditions)was observed.The increased TP and non-algal turbidity in addition to the lowered disturbance contribute to the prevalence of Group TB.Considering the difficulties in nutrient control,timely water replenishment is often a feasible method of controlling the dominance of harmful algae for reservoir management.Finally,alternative water sources are in high demand for ensuring ecological safety and water availability when dealing with drought.展开更多
Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excel...Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excellent stimuli responsiveness,facilitating efficient assembly construction.However,the limited availability of functional groups in conventional macrocycles restricts their ability to meet the demand for fabricating materials with multiple functionalities.To address this limitation,several research groups have introduced tetraphenylethylene(TPE),a well-known building block renowned for its remarkable aggregation-induced emission(AIE)effect,into the macrocycle framework.Herein,this paper summarizes the combination strategies and synergistic approaches that achieve multi-functionality by integrating TPE and macrocyclic architectures.The emission characteristics of TPE-embedded macrocycles are elucidated,and it is anticipated that more AIE-type macrocycles with innovative backbones and broad applications will emerge.展开更多
Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate c...Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate change.However,there is currently a lack of consensus regarding the leaf-scale iWUE variation characteristics among different functional types.In this study,we measured theδ^(13)Cleaf and iWUE values of different functional plants(i.e.,life forms,leaf types,and mycorrhizal types)from 120 species across distinct habitat types(i.e.,hillside,nearpeak,and peak)in a subtropical forest on the western slope of Wuyi Mountains,southern China.The results showed that theδ^(13)Cleaf values of plants on the western slope of Wuyi Mountains ranged from-34.63‰to-30.04‰,and iWUE ranged from 5.93μmol mol^(-1)to 57.34μmol mol^(-1).Theδ^(13)Cleaf and iWUE values differed significantly among plant life forms,following the order of herbs>vine plants>shrubs>trees.Theδ^(13)Cleaf and iWUE values of ectomycorrhizal(ECM)species were greater than those of arbuscular mycorrhizal(AM)species despite there being no significant difference between plants with different leaf types(Simple leaves(SL)vs.Compound leaves(CL)).From the hillside to the peak,both at the community level and at the species level,theδ^(13)C values of leaves and iWUE values of plants exhibited an upward trend.The regression analysis revealed that leaf-scale iWUE was significantly negatively correlated with soil water content and significantly positively correlated with leaf phosphorus content.The findings indicated that leaf carbon isotope fractionation and corresponding iWUE can be influenced by life form,mycorrhizal type,and soil water availability.These insights provide a deeper understanding of the coupling mechanisms of carbon,water,and nutrients among different functional plant types in subtropical forests,and offer insights into predicting plant adaptability under climate change.展开更多
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM te...Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.展开更多
Aliphatic C(sp^(3))-H moieties are ubiquitous in numerous organic compounds.Direct functionalization of inert C(sp^(3))-H bonds is a powerful and straightforward approach for the efficient construction of diverse carb...Aliphatic C(sp^(3))-H moieties are ubiquitous in numerous organic compounds.Direct functionalization of inert C(sp^(3))-H bonds is a powerful and straightforward approach for the efficient construction of diverse carbon-carbon or carbon-heteroatom bonds.Chelating group directed metal-catalyzed remote functionalization of readily available alkenes has emerged as an appealing strategy for rapidly accessing various value-added aliphatic molecules.With the aid of directing groups,variousα-,β-andγ-functionalized alkanes could be synthesized smoothly with excellent regioselectivity.The preferred formation of a stable five-or six-membered metallacycle intermediate terminates the chain-walking at a specific methylene site,which serves as the driving force for excellent site-selective migratory functionalization.This review herein is aimed at summarizing the recent progress on the metal-catalyzed regiodivergent functionalization of unactivated alkenes by merging alkene isomerization and cross-coupling with the assistance of directing auxiliary.Last but not least,the current situations and future directions in this field are highlighted and discussed.展开更多
The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and a...The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.展开更多
Graphene quantum dots(GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications.However, the toxicity of GQDs has not been...Graphene quantum dots(GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications.However, the toxicity of GQDs has not been systematically assessed, thus hindered their further development; especially, the risk of surface modifications of GQDs is largely unknown. In this study, we employed a lung carcinoma A549 cells as the model to investigate the cytotoxicity and autophagy induction of three types GQDs, including cGQDs(COOH-GQDs), hGQDs(OH-GQDs), and aGQDs(NH_2-GQDs). The results showed hGQDs was the most toxic, as significant cell death was induced at the concentration of 100 μg/mL,determining by WST-1 assay as well as Annexin-V-FITC/PI apoptosis analysis, whereas cGQDs and aGQDs were non-cytotoxic within the measured concentration. Autophagy detection was performed by TEM examination, LC3 fluorescence tracking, and Westernblot. Both aGQDs and hGQDs induced cellular autophagy to various degrees except for cGQDs. Further analysis on autophagy pathways indicated all GQDs significantly activated p-p38 MAPK; p-ERK1/2 was inhibited by aGQDs and hGQDs but activated by c GQDs. p-JNK was inhibited by aGQDs and c GQDs, while activated by hGQDs. Simultaneously, Akt was activated by hGQDs but inhibited by aGQDs. Inhibition of autophagy by 3-MA significantly increased the cytotoxicity of GQDs, suggesting that autophagy played a protective role against the toxicity of GQDs. In conclusion, c GQDs showed excellent biocompatibility and may be considered for biological applications. Autophagy induction may be included in the health risk assessment of GQDs as it reflects the stress status which may eventually lead to diseases.展开更多
Biochar(BC)are widely used as highly efficient adsorbents to alleviate aromatics-based contaminants due to their ease of preparation,wide availability,and high sustainability.The surface properties of BCs usually vary...Biochar(BC)are widely used as highly efficient adsorbents to alleviate aromatics-based contaminants due to their ease of preparation,wide availability,and high sustainability.The surface properties of BCs usually vary greatly due to their complex chemical constituents and different preparation processes and are reflected in the values of parameters such as the specific surface area(SSA),pore volume/size,and surface functional groups(SFGs).The effects of SSA and pore volume/size on the adsorption of aromatics have been widely reported.However,the corresponding mechanisms of BC SFGs towards aromatics adsorption remains unclear as the compositions of the SFGs are usually complex and hard to determine.To address in this gap in the literature,this review introduces a new perspective on the adsorption mechanisms of aromatics.Through collecting previously-reported results,the parameters log P(logarithm of the Kow),polar surface area,and the positive/negative charges were carefully calculated using Chem Draw3D,which allowed the hydrophobicity/hydrophilicity properties,electron donor-acceptor interactions,Hbonding,and electrostatic interactions between SFGs and aromatics-based contaminates to be inferred intuitively.These predictions were consistent with the reported results and showed that tailor-made BCs can be designed according to the molecular weights,chemical structures,and polarities of the target aromatics.Overall,this review provides new insight into predicting the physicochemical properties of BCs through revealing the relationship between SFGs and adsorbates,which may provide useful guidance for the preparing of highly-efficient,functional BCs for the adsorption of aromatics.展开更多
基金supported by the National Key R&D Program of China(No.2022YFC3203602)the Natural Science Foundation of China(No.52370018)+1 种基金Shaanxi Provincial Youth Innovation Team Project(No.22JP040)Shaanxi Provincial Key Scientific and Technological Innovation Team(No.2023-CX-TD-32).
文摘During the initial impoundment period of a canyon-shaped reservoir,the water body fluctuated violently regarding water level,hydrological condition,and thermal stratification.These variations may alter the structure of phytoplankton community,resulting in algal blooms and seriously threatening the ecological security of the reservoir.It is of great significance to understand the continuous changes of phytoplankton in the initial impoundment period for the protection of reservoir water quality.Therefore,a two-year in-situ monitoring study was conducted on water quality and phytoplankton in a representative canyonshaped reservoir named Sanhekou and the interannual changes of phytoplankton community and its response to environmental changes during the initial impoundment period were discussed at taxonomic versus functional classification levels.The results showed that the total nitrogen and permanganate index levels were relatively high in the first year due to rapid water storage and heavy rainfall input,and the more stable hydrological conditions in the second year promoted the increase of algae density and the transformation of community,and the proportion of cyanobacteria increased significantly.The succession order of phytoplankton in the first year of the initial impoundment periodwas Chlorophyta-Bacillariophyta-Chlorophyta,or J/F/X1-P/MP/W1-A/X1/MP,respectively.And the succession order in the second year was Cyanobacteria/Chlorophyta-Bacillariophyta-Chlorophyta,or L_(M)/G/P-P/A/X1-X1/J/G.Water temperature,relativewater column stability,mixing depth,and pHwere crucial factors affecting phytoplankton community succession.This study revealed the interannual succession law and driving factors of phytoplankton in the initial impoundment period and provided an important reference for the operation management and ecological protection of canyon-shaped reservoirs.
基金supported by the National Science Foundation of China(No.21606191)the Natural Science Foundation of Shandong Province(No.ZR2020ME024).
文摘As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC)were synthesized as CDI electrode material for removing Na^(+)and Cl^(−)in salty water.Results showed that the average diameter of HC was approximately 180 nm,and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups,respectively.The sulfonic acid functionalized HC(HC-S)showed better electrochemical and desalting performance than the amino-functionalized HC(HC–N),with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl.Additionally,92.63%capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S.The main findings prove that HC-S is viable as an electrodematerial for desalination by high-performance CDI applications.
基金Supported by the National Natural Science Foundation of China(42172148,42172142)。
文摘Taking the Lower Silurian Longmaxi Formation shale in the Sichuan Basin as an example,this study employs atomic force microscopy-based infrared(AFM-IR)spectroscopy to analyze the submicron-scale molecular functional groups of different types and occurrences of organic matter.Combined with the quantitative evaluation of pore development via scanning electron microscopy(SEM),the response of organic pore formation and evolution mechanisms to chemical composition and structural evolution of organic matter in overmature marine shale is investigated.The results indicate that the AFM-IR spectra of graptolite periderms and pyrobitumen in shale are dominated by the stretching vibrations of conjugated C=C bonds in aromatic compounds at approximately 1600 cm-1,with weak absorption peaks near 1375,1450 and 1720 cm-1,corresponding to aliphatic chains and carbonyl/carboxyl functional groups.Overall,the AFM-IR structural indices(A and C factors)of organic matter show a strong correlation with visible porosity in shales of equivalent maturity.Lower A and C factor values correlate with enhanced development of organic pores,which is associated with the detachment of more aliphatic chains and oxygen-containing functional groups during thermal evolution.Pyrobitumen-clay mineral composites generally exhibit superior pore development,likely attributable to clay mineral dehydration participating in hydrocarbon generation reactions that promote the removal of more functional groups.Additionally,hydrocarbon generation within organic-clay composites during high-over mature stages may induce volumetric expansion,resulting in microfracturing and hydrocarbon expulsion.The associated higher hydrocarbon expulsion rates promote the formation of larger pores and fracture-shaped pores along the flake-shaped clay minerals.This study highlights that the research of submicron-scale molecular functional groups provides a deeper understanding of organic matter evolution and pores development mechanisms in overmature shales,thereby offering critical theoretical parameters for reservoir evaluation in shale oil and gas exploration.
文摘Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.
基金support from the National Natural Science Foundation of China(No.21901206)Postdoctoral Science Foundation of China(No.2022M712589)+2 种基金General Key R&D Projects in Shaanxi Province(No.2023-YBGY-321)Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX0826)National&Local Joint Engineering Research Center for mineral Salt Deep Utilization,Huaiyin Institute of Technology(No.SF202407)for financial support。
文摘The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundance of hydrocarbon compounds,and the potential for late-stage functionalization of complex organic molecules.The ortho-and meta-C-H activation and functionalization of aromatic compounds have been widely explored in recent years,however the distal para-C-H activation and functionalization has remained a significant challenge because of the difficulty in forming energetically favorable metallacyclic transition states.The utilization of appropriate directing groups or templates as well as the meticulous design of catalysts and ligands has proven to be effective in transition-metal-catalyzed remote para-C-H bonds activation and functionalization of aromatic compounds.This review aims to summarize the strategies for controlling para-selective C–H functionalization using the directing group,template engineering,and catalyst/ligand design under transition metals catalysis in recent years.
基金supported by the National Natural Science Foundation of China(Nos.22375122 and 22105065)the National Science Fund for Distinguished Young Scholars(No.52225301)+3 种基金the National Key R&D Program of China(Nos.2020YFA0710400 and 2020YFA0710402)the 111 Project(No.B14041)Fundamental Research Funds for Central Universities(No.GK202304040)Open Project of the State Key Laboratory of Supramolecular Structure and Materials(No.sklssm2024023)。
文摘Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approach to deconstruct and mimic these residues using synthetic homopolymers and random copolymers with phenyl,amino,carboxyl,and hydroxyl functional groups using reversible addition-fragmentation chain transfer(RAFT)polymerization.The resulting polymers,designed with comparable molecular weights(M_(n):10–20 kDa)and narrow dispersities(PDI<1.3),mimic the diverse surface chemistry of amyloid-like proteins,enabling systematic investigation of their adhesive properties.The interfacial adhesion forces of different polymer films were quantified using atomic force microscopy(AFM)with a colloidal probe.Remarkably copolymers with multiple functional groups demonstrated significantly enhanced adhesion compared to homopolymers,a trend corroborated by macroscopic shear strength and stability tests.These results highlight that the synergistic effects of multiple functional groups are crucial for achieving universal interfacial adhesion of macromolecules,offering insights into protein adhesion mechanisms,and guiding polymer-based interfacial modifications.
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.
基金supported by the Natural Science Foundation of Yunnan Province(Grant No:202301AT070356)the Open Fund of the Key Laboratory of Tropical Forest Ecology,Chinese Academy of Sciences,National Science Foundation of China(Grant No.32061123003)+1 种基金the Joint Fund of the National Natural Science Foundation of China-Yunnan Province(Grant No.U1902203)the Field Station Foundation of the Chinese Academy of Sciences.
文摘Anthropogenic disturbances are widespread in tropical forests and influence the species composition in the overstory.However,the impacts of historical disturbance on tropical forest overstory recovery are unclear due to a lack of disturbance data,and previous studies have focused on understory species.In this study,the purpose was to deter-mine the influence of historical disturbance on the diver-sity,composition and regeneration of overstory species in present forests.In the 20-ha Xishuangbanna tropical sea-sonal rainforest dynamics plot in southwestern China,the historical disturbance boundaries were delineated based on panchromatic photographs from 1965.Factors that drove species clustering in the overstory layer(DBH≥40 cm)were analyzed and the abundance,richness and composition of these species were compared among different tree groups based on multiple regression tree analysis.The coefficient of variation of the brightness value in historical panchro-matic photographs from 1965 was the primary driver of spe-cies clustering in the overstory layer.The abundance and richness of overstory species throughout the regeneration process were similar,but species composition was always different.Although the proportion of large-seeded and vigorous-sprouting species showed no significant differ-ence between disturbed and undisturbed forests in the tree-let layer(DBH<20 cm),the difference became significant when DBH increased.The findings highlight that historical disturbances have strong legacy effects on functional group composition in the overstory and the recovery of overstory species was multidimensional.Functional group composi-tion can better indicate the dynamics of overstory species replacement during secondary succession.
基金Supported by the Young Backbone Teachers Project of Henan Province (No. 2020GGJS064)the Key Scientific and Technological Project of Henan Province (No. 232102321056)+1 种基金the Scientific Fund of Henan Normal University (No. 2020QK02)the Project of Huanghe River Fisheries Resources and Environment Investigation from the MARA,China,and the Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province
文摘To understand the distribution of phytoplankton functional groups(PFGs)and key factors on their compositions in different watersheds of the Huanghe(Yellow)River basin,25 river sites and 25 lake-reservoirs sites were selected.The contents of nephelometric turbidity(NTU),total nitrogen(TN),and total phosphorus(TP)were significantly higher in rivers than that in lakes or reservoirs,whereas the pH and CODMn(chemical oxygen demand or potassium permanganate index)were lower.Results show that,27 PFGs,namely,assemblages A,B,C,D,E,F,G,H,J,K,LM,Lo,M,MP,N,P,S1,S2,T,TC,W1,W2,X1,X2,X3,XPh,and Y,were identified.Additionally,ANOSIM correlation analysis demonstrated significant differences in PFG composition between the riverine and lake-reservoir sections in the Huanghe River basin.In the riverine watersheds,the group MP was dominant,while assemblages B and J were prevalent in lakes and reservoirs.The Mantel correlation tests and RDA analysis showed that environmental variables,such as NTU,water temperature(WT),conductivity(Cond),and TP,were key driving factors of shaping the dominant PFGs of the study area.Using the Venn diagram based on variation partitioning analysis,PFGs were mainly influenced by WT and TP in lake-reservoir sites,while in the river sites were affected mainly by geo-climatic variables.This study helps understanding the PFGs in river ecosystems,and unraveling the key driving factors in different watersheds,which shall be important for the protection and management of entire Huanghe River basin.
基金School-level Theoretical Research Project on Grassroots Party Building at Ningxia University in 2023(NXDXDJ202335).
文摘The education and management of college student Party members is the focus of student Party building work in colleges and universities.In the context of students second classroom being conducted in the academy,the management of student Party members should enhance their Party spirit cultivation through improving their self-management and self-monitoring.After the comprehensive reform of Ningxia University,Runze College targeted the characteristics of agricultural majors and set up functional Party groups to enable student Party members to play a pioneering and exemplary role in the second classroom.Runze College relies on the academy system and breaks through the traditional one-way management mode led by Party branch teachers in the second classroom of college students.It leverages the role of functional Party groups in off campus science and technology academies,and integrates Party building work into daily teaching and research and solving agricultural production technology problems for local villagers,achieving the goal of promoting and integrating Party building and business work,and improving each other.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金Supported by the National Natural Science Foundation of China(Nos.U22A20616,32071573)。
文摘Global warming has caused an increase in the frequency and duration of droughts worldwide.Droughts could trigger large changes in physico-chemical conditions and phytoplankton community in waterbodies,resulting in a shift in the phytoplankton community.Spring diatom blooms in reservoirs have been increasingly observed in the past decade in the Taihu Lake basin.The aim of the present study is to elucidate the impacts of droughts on aquatic environment and to determine the driving factors for the succession of the phytoplankton functional groups based on the analysis of data collected during spring from 2009 to 2020 in the Daxi Reservoir.The unimodal relationship between 1-month aggregated precipitation index and phytoplankton species richness indicated the competitive exclusion occurred in extremely drought period.The structural equation modeling indicated that drought-related low water level conditions intensified sediment resuspension,and increased the phosphorus-enriched nonalgal turbidity in the Daxi Reservoir.Concurrently,a steady shift in the Reynolds phytoplankton functional groups from L 0,TD,J,X 2,and A(phytoplankton taxa preferring low turbidity and nutrient conditions)to TB(pennate diatoms being adapt to turbid and nutrient-rich conditions)was observed.The increased TP and non-algal turbidity in addition to the lowered disturbance contribute to the prevalence of Group TB.Considering the difficulties in nutrient control,timely water replenishment is often a feasible method of controlling the dominance of harmful algae for reservoir management.Finally,alternative water sources are in high demand for ensuring ecological safety and water availability when dealing with drought.
基金the National Natural Science Foundation of China(No.22271154)the Science Fund for Distinguished Young Scholars of Jiangsu Province(No.BK20240078).
文摘Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excellent stimuli responsiveness,facilitating efficient assembly construction.However,the limited availability of functional groups in conventional macrocycles restricts their ability to meet the demand for fabricating materials with multiple functionalities.To address this limitation,several research groups have introduced tetraphenylethylene(TPE),a well-known building block renowned for its remarkable aggregation-induced emission(AIE)effect,into the macrocycle framework.Herein,this paper summarizes the combination strategies and synergistic approaches that achieve multi-functionality by integrating TPE and macrocyclic architectures.The emission characteristics of TPE-embedded macrocycles are elucidated,and it is anticipated that more AIE-type macrocycles with innovative backbones and broad applications will emerge.
基金supported by the Open Research Fund of Jiangxi Provincial Academy of Water Resources Sciences(2022SKTR05&2022SKTR03)the National Natural Science Foundation of China(42067049&42367049),the Jiangxi Provincial Natural Science Foundation(20242BAB25350)+5 种基金the Research Project of the Jiangxi Provincial Department of Forestry(CXZX(2025)14 and JXTG(2023)15)the Ganpo Juncai Plan(QN2023018)the Ganpo Yingcai Plan(gpyc20240038)the Double Thousand Plan of Jiangxi Province(jxsq2023102213 and jxsq2023102214)the Jiangxi Province“Science and Technology+Water Resources”Joint Plan Project(2023KSG01001)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(20243BCE51025).
文摘Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate change.However,there is currently a lack of consensus regarding the leaf-scale iWUE variation characteristics among different functional types.In this study,we measured theδ^(13)Cleaf and iWUE values of different functional plants(i.e.,life forms,leaf types,and mycorrhizal types)from 120 species across distinct habitat types(i.e.,hillside,nearpeak,and peak)in a subtropical forest on the western slope of Wuyi Mountains,southern China.The results showed that theδ^(13)Cleaf values of plants on the western slope of Wuyi Mountains ranged from-34.63‰to-30.04‰,and iWUE ranged from 5.93μmol mol^(-1)to 57.34μmol mol^(-1).Theδ^(13)Cleaf and iWUE values differed significantly among plant life forms,following the order of herbs>vine plants>shrubs>trees.Theδ^(13)Cleaf and iWUE values of ectomycorrhizal(ECM)species were greater than those of arbuscular mycorrhizal(AM)species despite there being no significant difference between plants with different leaf types(Simple leaves(SL)vs.Compound leaves(CL)).From the hillside to the peak,both at the community level and at the species level,theδ^(13)C values of leaves and iWUE values of plants exhibited an upward trend.The regression analysis revealed that leaf-scale iWUE was significantly negatively correlated with soil water content and significantly positively correlated with leaf phosphorus content.The findings indicated that leaf carbon isotope fractionation and corresponding iWUE can be influenced by life form,mycorrhizal type,and soil water availability.These insights provide a deeper understanding of the coupling mechanisms of carbon,water,and nutrients among different functional plant types in subtropical forests,and offer insights into predicting plant adaptability under climate change.
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
基金supported by“1 Decembrie 1918”University of Alba Iulia,510009 Alba Iuliasupported in part by the HEC-NRPU project,under the grant No.14566.
文摘Multi-criteria decision-making(MCDM)is essential for handling complex decision problems under uncertainty,especially in fields such as criminal justice,healthcare,and environmental management.Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved.To address this issue,we propose a novel framework that integrates group and overlap functions with Aczel-Alsina(AA)operational laws in the intuitionistic fuzzy set(IFS)environment.Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments,while the Group functions are used to combine different expert opinions into a single collective result.This study introduces four new aggregation operators:Group Overlap function-based intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Averaging(GOF-IFAAWA)operator,intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Weighted Geometric(GOF-IFAAWG),intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)OrderedWeighted Averaging(GOF-IFAAOWA),and intuitionistic fuzzy Aczel-Alsina(GOF-IFAA)Ordered Weighted Geometric(GOF-IFAAOWG),which are rigorously defined and mathematically analyzed and offer improved flexibility in managing overlapping,uncertain,and hesitant information.The properties of these operators are discussed in detail.Further,the effectiveness,validity,activeness,and ability to capture the uncertain information,the developed operators are applied to the AI-based Criminal Justice Policy Selection problem.At last,the comparison analysis between prior and proposed studies has been displayed,and then followed by the conclusion of the result.
基金the National Natural Science Foundation of China(No.22001116)the Basic and Applied Basic Research Foundation of Guangdong Province(No.2020A1515110816)funds provided by Changzhou University(No.ZMF23020217)。
文摘Aliphatic C(sp^(3))-H moieties are ubiquitous in numerous organic compounds.Direct functionalization of inert C(sp^(3))-H bonds is a powerful and straightforward approach for the efficient construction of diverse carbon-carbon or carbon-heteroatom bonds.Chelating group directed metal-catalyzed remote functionalization of readily available alkenes has emerged as an appealing strategy for rapidly accessing various value-added aliphatic molecules.With the aid of directing groups,variousα-,β-andγ-functionalized alkanes could be synthesized smoothly with excellent regioselectivity.The preferred formation of a stable five-or six-membered metallacycle intermediate terminates the chain-walking at a specific methylene site,which serves as the driving force for excellent site-selective migratory functionalization.This review herein is aimed at summarizing the recent progress on the metal-catalyzed regiodivergent functionalization of unactivated alkenes by merging alkene isomerization and cross-coupling with the assistance of directing auxiliary.Last but not least,the current situations and future directions in this field are highlighted and discussed.
文摘The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution.
基金supported by the National Natural Science Foundation of China(Nos.21477146,21577163)the National Key Research and Development Program of China(No.2017YFF0211203-3)+1 种基金the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-DQC020-02)the Chinese Academy of Sciences(No.XDB14040101)
文摘Graphene quantum dots(GQDs) possess great potential in various applications due to their superior physicochemical properties and wide array of available surface modifications.However, the toxicity of GQDs has not been systematically assessed, thus hindered their further development; especially, the risk of surface modifications of GQDs is largely unknown. In this study, we employed a lung carcinoma A549 cells as the model to investigate the cytotoxicity and autophagy induction of three types GQDs, including cGQDs(COOH-GQDs), hGQDs(OH-GQDs), and aGQDs(NH_2-GQDs). The results showed hGQDs was the most toxic, as significant cell death was induced at the concentration of 100 μg/mL,determining by WST-1 assay as well as Annexin-V-FITC/PI apoptosis analysis, whereas cGQDs and aGQDs were non-cytotoxic within the measured concentration. Autophagy detection was performed by TEM examination, LC3 fluorescence tracking, and Westernblot. Both aGQDs and hGQDs induced cellular autophagy to various degrees except for cGQDs. Further analysis on autophagy pathways indicated all GQDs significantly activated p-p38 MAPK; p-ERK1/2 was inhibited by aGQDs and hGQDs but activated by c GQDs. p-JNK was inhibited by aGQDs and c GQDs, while activated by hGQDs. Simultaneously, Akt was activated by hGQDs but inhibited by aGQDs. Inhibition of autophagy by 3-MA significantly increased the cytotoxicity of GQDs, suggesting that autophagy played a protective role against the toxicity of GQDs. In conclusion, c GQDs showed excellent biocompatibility and may be considered for biological applications. Autophagy induction may be included in the health risk assessment of GQDs as it reflects the stress status which may eventually lead to diseases.
基金funded by the National Natural Science Foundation of China(No.51961165104)Project of Thousand Youth Talents(No.AUGA2160100917)+1 种基金University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020050)Provincial Leading Talent Echelon Cultivation Project of Heilongjiang Institute of Technology(No.2020LJ04)。
文摘Biochar(BC)are widely used as highly efficient adsorbents to alleviate aromatics-based contaminants due to their ease of preparation,wide availability,and high sustainability.The surface properties of BCs usually vary greatly due to their complex chemical constituents and different preparation processes and are reflected in the values of parameters such as the specific surface area(SSA),pore volume/size,and surface functional groups(SFGs).The effects of SSA and pore volume/size on the adsorption of aromatics have been widely reported.However,the corresponding mechanisms of BC SFGs towards aromatics adsorption remains unclear as the compositions of the SFGs are usually complex and hard to determine.To address in this gap in the literature,this review introduces a new perspective on the adsorption mechanisms of aromatics.Through collecting previously-reported results,the parameters log P(logarithm of the Kow),polar surface area,and the positive/negative charges were carefully calculated using Chem Draw3D,which allowed the hydrophobicity/hydrophilicity properties,electron donor-acceptor interactions,Hbonding,and electrostatic interactions between SFGs and aromatics-based contaminates to be inferred intuitively.These predictions were consistent with the reported results and showed that tailor-made BCs can be designed according to the molecular weights,chemical structures,and polarities of the target aromatics.Overall,this review provides new insight into predicting the physicochemical properties of BCs through revealing the relationship between SFGs and adsorbates,which may provide useful guidance for the preparing of highly-efficient,functional BCs for the adsorption of aromatics.