期刊文献+
共找到1,842篇文章
< 1 2 93 >
每页显示 20 50 100
Integrated Building Envelope Design Process Combining Parametric Modelling and Multi-Objective Optimization 被引量:4
1
作者 Dan Hou Gang Liu +2 位作者 Qi Zhang Lixiong Wang Rui Dang 《Transactions of Tianjin University》 EI CAS 2017年第2期138-146,共9页
As an important element in sustainable building design, the building envelope has been witnessing a constant shift in the design approach. Integrating multi-objective optimization (MOO) into the building envelope desi... As an important element in sustainable building design, the building envelope has been witnessing a constant shift in the design approach. Integrating multi-objective optimization (MOO) into the building envelope design process is very promising, but not easy to realize in an actual project due to several factors, including the complexity of optimization model construction, lack of a dynamic-visualization capacity in the simulation tools and consideration of how to match the optimization with the actual design process. To overcome these difficulties, this study constructed an integrated building envelope design process (IBEDP) based on parametric modelling, which was implemented using Grasshopper platform and interfaces to control the simulation software and optimization algorithm. A railway station was selected as a case study for applying the proposed IBEDP, which also utilized a grid-based variable design approach to achieve flexible optimum fenestrations. To facilitate the stepwise design process, a novel strategy was proposed with a two-step optimization, which optimized various categories of variables separately. Compared with a one-step optimization, though the proposed strategy performed poorly in the diversity of solutions, the quantitative assessment of the qualities of Pareto-optimum solution sets illustrates that it is superior. © 2016, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Architectural design BUILDINGS Computer software Design Intelligent buildings optimization Pareto principle Solar buildings
在线阅读 下载PDF
A New Definition and Calculation Model for Evolutionary Multi-Objective Optimization 被引量:1
2
作者 Zhou Ai-min, Kang Li-shan, Chen Yu-ping, Huang Yu-zhenState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期189-194,共6页
We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary mode... We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent. 展开更多
关键词 evolving equilibrium evolving solutions MINT model multi-objective optimization
在线阅读 下载PDF
Aircraft Landing Gear Control with Multi-Objective Optimization Using Generalized Cell Mapping 被引量:3
3
作者 孙建桥 贾腾 +3 位作者 熊夫睿 秦志昌 吴卫国 丁千 《Transactions of Tianjin University》 EI CAS 2015年第2期140-146,共7页
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli... This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain. 展开更多
关键词 LANDING GEAR SLIDING mode CONTROL model uncertainty multi-objective optimization GENERALIZED cellmapping
在线阅读 下载PDF
A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser 被引量:1
4
作者 Y.Zheng J.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期275-284,共10页
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta... A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions. 展开更多
关键词 multi-objective particle swarm optimization Kriging meta-model Trapezoid index Deepwater composite riser
在线阅读 下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
5
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics model Competitive multi-objective Particle Swarm optimization Algorithm (CMOPSO) multi-objective optimization
在线阅读 下载PDF
MODS: A Novel Metaheuristic of Deterministic Swapping for the Multi-Objective Optimization of Combinatorials Problems
6
作者 Elias David Nifio Ruiz Carlos Julio Ardila Hemandez +2 位作者 Daladier Jabba Molinares Agustin Barrios Sarmiento Yezid Donoso Meisel 《Computer Technology and Application》 2011年第4期280-292,共13页
This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto... This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%. 展开更多
关键词 METAHEURISTIC deterministic finite automata combinatorial problem multi - objective optimization metrics.
在线阅读 下载PDF
Research and Application of Pollution Control in the Middle Reach of Ashe River by Multi-Objective Optimization
7
作者 Yuanyuan Wang Liang Guo +3 位作者 Yi Wang Meng Ran Jie Liu Peng Wang 《Journal of Geoscience and Environment Protection》 2013年第2期1-6,共6页
Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quali... Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quality, for us to optimize the process, we set pollutant concentration and total amount control as constraints and put forward the optimal pollution reduction control strategy by simulating and optimizing water quality monitoring data from the target section. Integrated with scenario analysis, COD and ammonia nitrogen pollution optimization wasstudiedin objective function area from Mountain Maan of Acheng to Fuerjia Bridge along Ashe River. The results showed that COD and NH3-N contribution has been greatly reduced to AsheRiverby 49.6% and 32.7% respectively. Therefore, multi-objective optimization by nonlinear programming for water pollution control can make source sewage optimization fairly and reasonably, and the optimal strategies of pollution emission are presented. 展开更多
关键词 ONE-DIMENSIONAL Water Quality model Point Source Pollution Reduction multi-objective optimization Middle REACH of Ashe RIVER
暂未订购
Multi-Objective Optimal Dispatch Considering Wind Power and Interactive Load for Power System
8
作者 Xinxin Shi Guangqing Bao +1 位作者 Kun Ding Liang Lu 《Energy and Power Engineering》 2018年第4期1-10,共10页
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th... With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power. 展开更多
关键词 WIND Power Interactive Load optimal DISPATCH multi-objective QPSO models
暂未订购
Multi-objective Firefly Algorithm for Test Data Generation with Surrogate Model
9
作者 Wenning Zhang Qinglei Zhou +1 位作者 Chongyang Jiao Ting Xu 《国际计算机前沿大会会议论文集》 2021年第1期283-299,共17页
To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with... To solve the emerging complex optimization problems, multi objectiveoptimization algorithms are needed. By introducing the surrogate model forapproximate fitness calculation, the multi objective firefly algorithm with surrogatemodel (MOFA-SM) is proposed in this paper. Firstly, the population wasinitialized according to the chaotic mapping. Secondly, the external archive wasconstructed based on the preference sorting, with the lightweight clustering pruningstrategy. In the process of evolution, the elite solutions selected from archivewere used to guide the movement to search optimal solutions. Simulation resultsshow that the proposed algorithm can achieve better performance in terms ofconvergence iteration and stability. 展开更多
关键词 Firefly algorithm multi objective optimization Surrogate model Test data generation
原文传递
A Novel Quantum - inspired Multi - Objective Evolutionary Algorithm Based on Cloud Theory
10
作者 Bo Xu~1 Wang Cheng~2 Jian-Ping Yu~3 Yong Wang~4 (1.Department of Computer Science and Technology,Guangdong University of Petrochemical Technology,Maoming,Guangdong,525000) (2.Wells Fargo Bank,USA) (3.College of Mathematics and Computer Science,Hunan Normal University,Changsha,410081) (4.College of Electrical and Information Engineering,Hunan University,Changsha,410082) 《自动化博览》 2011年第S2期145-150,共6页
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the ... In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ. 展开更多
关键词 multi-objective optimization PROBLEM Quantum-Inspired multi-objective EVOLUTIONARY ALGORITHM CLOUD model EVOLUTIONARY ALGORITHM
在线阅读 下载PDF
汽车中立柱内板冲压的新型选择NSGA-Ⅱ多目标优化 被引量:1
11
作者 赵亮 彭琳 《机械设计与制造》 北大核心 2025年第2期280-284,288,共6页
为了减小汽车中立柱冲压成形的最大减薄率和最大增厚率,提出了基于新型选择NSGA-Ⅱ算法的冲压优化方法。介绍了中立柱冲压成形工艺和高强度钢材料;以最小化最大减薄率和最大增厚率为目标,建立了多目标优化模型;使用最优拉丁超立方抽样... 为了减小汽车中立柱冲压成形的最大减薄率和最大增厚率,提出了基于新型选择NSGA-Ⅱ算法的冲压优化方法。介绍了中立柱冲压成形工艺和高强度钢材料;以最小化最大减薄率和最大增厚率为目标,建立了多目标优化模型;使用最优拉丁超立方抽样法在优化空间抽取了30个采样点,借助AutoForm R7软件得到相应的最大减薄率和最大增厚率;使用3阶响应面模型拟合了参数间回归模型,并验证了模型的回归精度。给出了融合非支配排序层和自身累积被支配数的新型选择策略,并将其融入到NSGA-Ⅱ算法中,提出了新型选择NSGA-II算法,并将该算法应用于优化模型求解。经生产验证,最大减薄率均值由当13.1%减小为11.6%,最大增厚率均值由1.05%减小为0.98%,验证了这里的方法在中立柱冲压优化中的有效性。 展开更多
关键词 汽车中立柱 高强度钢 新型选择策略 多目标优化 响应面模型
在线阅读 下载PDF
HASKSM-MOSTOA算法求解烟组推手多目标优化问题
12
作者 郑维 林玉红 +1 位作者 慎龙舞 朱文魁 《机械设计与制造》 北大核心 2025年第7期219-225,共7页
针对卷烟包装机中烟组推手结构优化设计存在效率低、设计成本高、建模误差大等问题,提出一种基于自适应混合加点Kriging-MOSTOA的多目标优化方法。首先,为提高烟组推手优化代理模型的精度,引入了一种自适应混合加点Kriging代理模型(HASK... 针对卷烟包装机中烟组推手结构优化设计存在效率低、设计成本高、建模误差大等问题,提出一种基于自适应混合加点Kriging-MOSTOA的多目标优化方法。首先,为提高烟组推手优化代理模型的精度,引入了一种自适应混合加点Kriging代理模型(HASKSM)来构建烟组推手设计参数与性能之间的映射关系;其次,融合快速非支配排序策略、多项式变异算子和新的拥挤度距离计算策略,提出一种多目标乌燕鸥优化算法(MOSTOA),用于求解烟组推手多目标优化设计问题。最后,构建基于HASKSM-MOSTOA的烟组多目标优化设计流程,以测试函数和烟组推手工程案例验证了所提方法的可行性。结果表明:MOSTOA算法具有良好的寻优性能;同时,采用HASKSM-MOSTOA方法能够有效提高烟组推手多目标优化设计精度和效率,为提高卷烟包装设备优化设计提供了理论指导。 展开更多
关键词 烟组推手 自适应混合加点 多目标乌燕鸥算法 Kriging代理模型 多目标优化设计
在线阅读 下载PDF
基于SVR-HDMR模型的权重系数对潜水泵叶轮优化设计的影响
13
作者 张金凤 刘佳 +2 位作者 俞鑫厚 李贵东 张文佳 《排灌机械工程学报》 北大核心 2025年第8期779-785,共7页
为研究高维混合模型在潜水泵叶轮优化设计中的适配性及权重系数对叶轮优化设计的影响,以比转数为87的某型潜水泵为研究对象,基于构建的SVR-HDMR模型和遗传算法进行多目标优化,分析了不同扬程和效率的权重系数对泵内流特性和叶轮出口速... 为研究高维混合模型在潜水泵叶轮优化设计中的适配性及权重系数对叶轮优化设计的影响,以比转数为87的某型潜水泵为研究对象,基于构建的SVR-HDMR模型和遗传算法进行多目标优化,分析了不同扬程和效率的权重系数对泵内流特性和叶轮出口速度的影响,并对计算结果进行试验验证,试验与计算的误差在5%左右.结果表明:3种优化方案均能提升泵性能,其中扬程和效率权重系数均为0.5的方案效果最优,可使泵内流动损失显著降低,有效改善流场紊乱程度,同时提高叶轮出口绝对速度周向分量并降低湍动能,最终实现扬程提升1.20 m、效率提高1.80%的优化效果.研究结果对导叶式离心泵设计具有重要参考价值. 展开更多
关键词 潜水泵 数值模拟 多目标优化 高维混合模型 模型试验
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
14
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 BP神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
开都河流域水-能源-生态综合收益下的水资源优化配置 被引量:3
15
作者 唐晓宇 刘铁 +5 位作者 黄粤 潘晓辉 凌瑜楠 彭佳宾 张鹏 尚喻 《南水北调与水利科技(中英文)》 北大核心 2025年第1期90-98,共9页
针对干旱区水资源分配不合理的问题,以新疆开都河流域水资源为研究对象,以流域水-能源-生态综合收益最高为目标,建立水资源多目标优化配置模型,采用基于参考点的非支配排序进化算法(reference-point based many-objective,NSGA-Ⅲ)对模... 针对干旱区水资源分配不合理的问题,以新疆开都河流域水资源为研究对象,以流域水-能源-生态综合收益最高为目标,建立水资源多目标优化配置模型,采用基于参考点的非支配排序进化算法(reference-point based many-objective,NSGA-Ⅲ)对模型进行求解。针对优化方案选择问题,以经济效益、社会效益和生态效益为准则层构建流域水资源最适配置方案评价指标体系,采用层次分析法对优化结果进行评价分析。结果表明:最适配置方案相较于传统配置方案,水库发电量增加5.83%,农业经济效益减少2.34%,生态效益提高40.08%;当地种植结构需进行适当调整,应增加玉米和西红柿的种植面积,减少小麦、棉花和辣椒的种植面积;博斯腾湖大湖和小湖水位均达到最适生态水位。研究成果可为当地制定水资源配置方案提供决策参考,有重要的理论意义和应用价值。 展开更多
关键词 多目标 水资源优化配置 博斯腾湖 NSGA- 层次分析法
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的含地热发电电力系统多目标优化调度 被引量:3
16
作者 孔祥祺 张鹏 +4 位作者 孟珣 邵萌 唐涛 张新茹 孙金伟 《热力发电》 北大核心 2025年第2期30-41,共12页
针对目前风电、光伏发电波动性大和典型区域消纳困难的问题,将出力可靠、爬坡迅速的地热发电纳入混合能源系统,提出了一种地热发电促进风光消纳的新型混合能源系统优化调度方法。综合考虑运行成本和运行风险,以机组物理特性为约束条件,... 针对目前风电、光伏发电波动性大和典型区域消纳困难的问题,将出力可靠、爬坡迅速的地热发电纳入混合能源系统,提出了一种地热发电促进风光消纳的新型混合能源系统优化调度方法。综合考虑运行成本和运行风险,以机组物理特性为约束条件,建立新型混合能源系统多目标优化调度模型;提出滚动修补策略修复种群初始值,基于自适应均衡模型和非支配排序遗传算法求解模型。本算法相较于传统算法更适合解决高维度、高复杂度的约束问题,且收敛速度较快。通过西藏某区域冬季典型日2种场景计算实例对比分析发现,地热发电使风光消纳率分别上升了8.0%、7.9%,同时系统运行成本和风险指数分别下降了2.5%、7.1%。证实地热发电可促进风光消纳和提高电力系统可靠性,为混合能源系统的决策调度提供理论支撑。 展开更多
关键词 混合能源系统 地热发电 多目标优化 自适应均衡模型 非支配排序遗传算法
在线阅读 下载PDF
基于NSGA-Ⅱ算法的环缝进气喷管结构参数优化研究 被引量:1
17
作者 廖俊贤 杨铭 +3 位作者 薛玉琴 关奔 王革 张普 《兵器装备工程学报》 北大核心 2025年第4期144-153,共10页
针对环缝进气喷管相互耦合的复杂结构参数,构建Kriging代理模型,基于NSGA-Ⅱ多目标遗传算法以喷管效率特性以及质量特性为优化目标,对环缝进气喷管的初始扩张半角、出口扩张半角、扩张段长度、入射中心位置扩张比以及入射角度进行优化... 针对环缝进气喷管相互耦合的复杂结构参数,构建Kriging代理模型,基于NSGA-Ⅱ多目标遗传算法以喷管效率特性以及质量特性为优化目标,对环缝进气喷管的初始扩张半角、出口扩张半角、扩张段长度、入射中心位置扩张比以及入射角度进行优化。优化结果表明:相较于传统喷管,环缝进气喷管效率特性增益可达13.6%;相较于基础喷管,质量特性增益可达13%。通过分析优化进程发现,随着喷管效率特性的增加分离激波逐渐前移,膨胀波束强度逐渐增加;在优化范围内扩张段长度、入射位置、入射角度显著影响喷管性能,初始扩张半角和出口扩张半角对喷管性能影响较小,入射角度越大、入射位置越靠前、扩张段长度越长喷管效率特性越高,喷管质量特性主要由扩张段长度决定。 展开更多
关键词 环缝进气喷管 效率特性 质量特性 多目标优化 Kriging代理模型
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的加压滴灌管网优化设计 被引量:1
18
作者 樊凯 霍雪飞 +3 位作者 王文娥 胡笑涛 冉聃颉 皮滢滢 《灌溉排水学报》 2025年第1期59-65,共7页
【目的】加快滴灌管网技术快速普及,提高管网系统的经济性与可靠性。【方法】以单位面积成本最低为经济目标,以不利节点的富余水头方差为可靠性目标,并考虑实际管网工程投资中的折旧费与运行管理费用建立加压滴灌管网优化设计数学模型,... 【目的】加快滴灌管网技术快速普及,提高管网系统的经济性与可靠性。【方法】以单位面积成本最低为经济目标,以不利节点的富余水头方差为可靠性目标,并考虑实际管网工程投资中的折旧费与运行管理费用建立加压滴灌管网优化设计数学模型,开展优化设计。以新疆某大型灌区内某加压滴灌管网系统为例,采用改进NSGA-Ⅱ算法方法与NSGA-Ⅱ算法对其进行优化。【结果】改进NSGA-Ⅱ算法的Pareto前沿解优于NSGA-Ⅱ算法;相同单位面积成本费用下,改进NSGA-Ⅱ算法求得的管网系统可靠性更高;经50次独立计算,改进NSGA-Ⅱ算法的均匀性指数(0.371)低于NSGA-Ⅱ算法的均匀性指数(0.404);基于改进NSGA-Ⅱ算法求解得到的单位面积成本费用为792.92元/hm^(2),较原工程方案的单位面积成本费用851.89元/hm^(2)降低了6.92%。不利节点的富余水头方差从0.15降至0.06。【结论】改进NSGA-Ⅱ算法的探索能力较NSGA-Ⅱ算法强,能够提供更优的解决方案,得到的优化方案能够同时提高管网系统的经济性和可靠性。 展开更多
关键词 改进NSGA-Ⅱ算法 优化模型 管网优化设计 加压滴灌管网 多目标优化
在线阅读 下载PDF
基于电-热-老化耦合模型的脉冲负载混合储能电源系统容量配置与低温预热策略联合优化 被引量:1
19
作者 宋元明 周星 +2 位作者 刘亚杰 黄旭程 金光 《中国电机工程学报》 北大核心 2025年第17期6738-6751,I0011,共15页
锂离子电池储能系统在低温下性能急剧下降,难以满足高功率脉冲负载用电需求。为此,该文提出一种被动式锂离子电池-超级电容器混合储能系统容量配置与低温预热策略多目标联合优化方法,以解决脉冲负载的低温用电问题。首先,为准确描述低... 锂离子电池储能系统在低温下性能急剧下降,难以满足高功率脉冲负载用电需求。为此,该文提出一种被动式锂离子电池-超级电容器混合储能系统容量配置与低温预热策略多目标联合优化方法,以解决脉冲负载的低温用电问题。首先,为准确描述低温动态特性,建立被动式混合储能系统电-热-老化耦合模型。然后,以最小化混合储能系统重量与最低工作环境温度为目标建立容量配置与低温预热策略联合优化模型,并采用带精英策略的非支配排序遗传算法求解。最后,针对某型高功率脉冲负载工况开展案例研究。优化结果表明,低温下混合储能方案的系统质量与购置成本显著优于电池储能方案,-40℃下前者可减轻44.18%的系统质量;在全温度范围内混合储能方案的单次脉冲成本与预热所需时长均优于电池储能方案,前者的平均单次脉冲成本仅为后者的52.50%,平均预热时长仅为后者的35.63%。 展开更多
关键词 混合储能系统 低温电源 --老化耦合模型 极速加热 多目标优化 高功率脉冲负载
原文传递
考虑流阻-过滤-承载性能的下管座结构优化研究
20
作者 张博 袁攀 +7 位作者 肖忠 光宏昊 柴振鸿 段鑫 辛勇 朱发文 孙坤 李宝童 《核动力工程》 北大核心 2025年第1期225-231,共7页
为实现燃料组件下管座的冷却剂压降、异物过滤和结构承载等多种性能的综合提升,本研究提出了一种多目标优化方法。该方法以冷却剂压降和异物过滤效率为目标,优化下管座的关键尺寸参数,并以六边形下管座为例开展了尺寸优化研究。结果表明... 为实现燃料组件下管座的冷却剂压降、异物过滤和结构承载等多种性能的综合提升,本研究提出了一种多目标优化方法。该方法以冷却剂压降和异物过滤效率为目标,优化下管座的关键尺寸参数,并以六边形下管座为例开展了尺寸优化研究。结果表明,采用该方法下管座的冷却剂压降和异物过滤的优化幅度分别达到12.5%和6.3%,并且优化后的最大应力同步降低14.0%,性能提升效果显著。本研究建立的多目标优化方法具有通用性,能够适用于其他类型下管座的结构优化以提升其综合性能。 展开更多
关键词 下管座 多目标优化 压降 异物过滤 代理模型 粒子群优化
原文传递
上一页 1 2 93 下一页 到第
使用帮助 返回顶部