Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of S...Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.展开更多
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual...During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.展开更多
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen...Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.展开更多
为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种...为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。展开更多
文摘Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.
基金Projects(50275150,61173052)supported by the National Natural Science Foundation of China
文摘During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.
文摘Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.
文摘为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。