期刊文献+
共找到12,385篇文章
< 1 2 250 >
每页显示 20 50 100
Admittance-based robot force control without velocity and force sensors
1
作者 Julio Antonio Caballero-Mora Rogelio de Jesús Portillo-Vélez +2 位作者 JoséAlejandro Vásquez-Santacruz Alexandro López-González Eduardo Gamaliel Hernández-Martínez 《Control Theory and Technology》 2025年第3期494-512,共19页
Force control merged with motion control represent the fundamental low level requirements for the most complex tasks to be performed by any robot.In particular,robust motion and force controllers allow robots to deal ... Force control merged with motion control represent the fundamental low level requirements for the most complex tasks to be performed by any robot.In particular,robust motion and force controllers allow robots to deal with real-world uncertainties among other disturbances.In this paper,an admittance-based force controller using the Active Disturbance Rejection Control approach is proposed,which allows to perform robot force control without a force sensor.In addition,a theoretical synthesis of the control law including an extended state observer for the estimation of the robot–surface force interaction and their formal stability analysis is presented.The validation of the proposal is depicted by numerical simulations using the dynamical model of a two degrees of freedom robot manipulator,for both a constant and a time-varying force control tasks with an unknown curved surface,while considering joint measurement noise and force sensors noise and an external disturbance force. 展开更多
关键词 ADRC OBSERVER force control ADMITTANCE
原文传递
Role of Inertial Force and Dynamic Contact Angle on the Incipient Motion of Droplets in Shearing Gas Flow
2
作者 Zichen Zhang Aoyu Zhang +1 位作者 Tongtong Qi Xiaoyan Ma 《Fluid Dynamics & Materials Processing》 2025年第7期1601-1610,共10页
This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation freq... This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation frequencies.Results reveal that the eigenfrequencies vary spatially due to distinct oscillation modes occurring at different droplet locations.Notably,the fundamental eigenfrequency decreases with reducing droplet volume,while droplet viscosity exerts minimal influence on this frequency.Prior to the onset of motion,the dynamic contact angle consistently remains between the advancing and receding angles.The inertial forces generated by droplet oscillation are found to be significantly greater than the adhesion forces,indicating that classical static models are inadequate for capturing inertial contributions to droplet motion.These findings offer new insights into the role of oscillatory behavior in influencing the dynamics of droplet motion,and contribute to a more detailed understanding of wind-driven droplet transport phenomena. 展开更多
关键词 Droplet oscillation droplet motion dynamic contact angle inertial force
在线阅读 下载PDF
Real-time teleoperation of magnetic force-driven microrobots with a motion model and stable haptic force feedback for micromanipulation
3
作者 Yasin Cagatay Duygu Baijun Xie +2 位作者 Xiao Zhang Min Jun Kim Chung Hyuk Park 《Nanotechnology and Precision Engineering》 2025年第2期63-76,共14页
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot application... Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology. 展开更多
关键词 MICROROBOT Magnetic control Haptic force-feedback Microrobot motion model Telemanipulation
在线阅读 下载PDF
Digital model for rapid prediction and autonomous control of die forging force for aluminum alloy aviation components
4
作者 Hao Hu Fan Zhao +5 位作者 Daoxiang Wu Zhengan Wang Zhilei Wang Zhihao Zhang Weidong Li Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2189-2199,共11页
Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study... Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process. 展开更多
关键词 aluminum alloy forging force prediction model machine learning intelligent control
在线阅读 下载PDF
Force-controlled 3D mechanical stretching to enhance the exosome secretion of bone mesenchymal stem cells for bone repair
5
作者 Jie Wu Hao Wang +6 位作者 Tao Sun Qing Shi Xie Chen Yuanbo Qi Sheng Tao Jiahua Zhao Daohong Liu 《Bio-Design and Manufacturing》 2025年第3期442-460,I0034-I0039,共25页
Exosomes derived from bone mesenchymal stem cells(BMSCs)show promising potential for treating bone defects.However,their clinical application is hindered by low yield and insufficient repair ability.Three-dimensional(... Exosomes derived from bone mesenchymal stem cells(BMSCs)show promising potential for treating bone defects.However,their clinical application is hindered by low yield and insufficient repair ability.Three-dimensional(3D)mechanical stimulation has been a well-known method for enhancing exosome secretion;however,the traditional stimulation process is always achieved by controlling the displacement of manipulators,which may induce uneven loading distribution and degradation of stimulation strength.Here,we propose a micro-stretching manipulator that automatically controls the stretching force applied to gelatin methacryloyl(GelMA)/hyaluronic acid methacryloyl(HAMA)hybrid hydrogel sheets containing BMSCs within an incubator.To ensure the structural stability of the sheets after long-term stretching,the mixing ratio between GelMA and HAMA was optimized according to the mechanical property response of the sheets to cyclical loading.Subsequently,force-controlled mechanical loading was applied to the BMSC-laden sheets to produce exosomes.Compared with displacement control,force-controlled loading provides a more stable force stimulation,thereby enhancing exosome secretion.Furthermore,continuously stimulated exosomes exhibited a stronger capacity for promoting osteogenic differentiation of BMSCs and facilitating the repair of bone defects in a rat model.These findings suggest that force-controlled loading of cell-laden hydrogels offers a novel approach for the production of BMSC-derived exosomes and their application in bone repair. 展开更多
关键词 EXOSOMES force control Mechanical loading Mesenchymal stem cells Bone repair
暂未订购
Design and Implementation of Closed-Loop Control of Vector Force in Static Push-the-bit Rotary Steering System
6
作者 Liang Yao Kang Hong-bo +4 位作者 Liu Yue Chen wen Sun Yan Ma Li Zhao Yan-Wei 《Applied Geophysics》 2025年第3期796-803,896,共9页
Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the p... Rotary steering systems(RSSs)have been increasingly used to develop horizontal wells.A static push-the-bit RSS uses three hydraulic modules with varying degrees of expansion and contraction to achieve changes in the pushing force acting on the wellbore in different sizes and directions within a circular range,ultimately allowing the wellbore trajectory to be drilled in a predetermined direction.By analyzing its mathematical principles and the actual characteristics of the instrument,a vector force closed-loop control method,including steering and holding modes,was designed.The adjustment criteria for the three hydraulic modules are determined to achieve rapid adjustment of the vector force.The theoretical feasibility of the developed method was verified by comparing its results with the on-site application data of an imported rotary guidance system. 展开更多
关键词 Static push-the-bit hydraulic modules closed-loop control vector force working mode
在线阅读 下载PDF
Comparison Study on the Motion/Force Transmissibility of Four 6-DOF Parallel Mechanisms
7
作者 Hongye Wu Haitao Liu +1 位作者 Xianlei Shan Wei Yue 《Chinese Journal of Mechanical Engineering》 2025年第4期504-517,共14页
This paper carries out a comprehensive and systematic comparison study on the kinematic performance of four six degrees of freedom(6-DOF)parallel mechanisms with different topologies,i.e.,6-UPS,3-(2-UPR)U,3-(2-UCR)U,a... This paper carries out a comprehensive and systematic comparison study on the kinematic performance of four six degrees of freedom(6-DOF)parallel mechanisms with different topologies,i.e.,6-UPS,3-(2-UPR)U,3-(2-UCR)U,and 3-R(2-RPR)U.The research begins by elaborating in detail the similarities and differences among these four parallel mechanisms.By standardizing the definition of the coordinate system for each mechanism,the inverse kinematics and the Jacobian matrix of these four mechanisms are systematically derived.Employing a set of motion/force transmission indices,which are directly obtained from the Jacobian matrix,the kinematic performances of the four mechanisms are thoroughly analyzed and compared within the given workspaces while maintaining the same dimensional parameters for all cases.The comparison study of these four parallel mechanisms extends beyond local transmission indices to also include global transmission indices,covering both position and orientation workspaces,as well as assessments at both the local and global workspace levels.This comprehensive approach ensures a detailed and fair evaluation of their respective kinematic capabilities.The results indicate that the comprehensive kinematic performances of the four parallel mechanisms are similar,and providing a solid theoretical foundation for innovative design and practical guidance for selecting optimal architectures based on specific application requirements. 展开更多
关键词 6-DOF parallel mechanism Kinematic performance motion/force transmissibility
在线阅读 下载PDF
Adaptive Nonlinear PD Controller of Two-Wheeled Self-Balancing Robot with External Force 被引量:1
8
作者 Van-Truong Nguyen Dai-Nhan Duong +3 位作者 Dinh-Hieu Phan Thanh-Lam Bui Xiem HoangVan Phan Xuan Tan 《Computers, Materials & Continua》 SCIE EI 2024年第11期2337-2356,共20页
This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design... This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions. 展开更多
关键词 Two-wheeled self-balancing robot nonlinear PD control external force genetic algorithm
在线阅读 下载PDF
The Gravitational Potential and the Gravitational Force According to the Correct Reissner-Nordstrøm, Kerr and Kerr-Newman Metrics
9
作者 Carlo Maria Pace 《Journal of Modern Physics》 2025年第1期52-92,共41页
In a recent article, we have corrected the traditional derivation of the Schwarzschild metric, thus obtaining the formulation of the correct Schwarzschild metric, which is different from the traditional Schwarzschild ... In a recent article, we have corrected the traditional derivation of the Schwarzschild metric, thus obtaining the formulation of the correct Schwarzschild metric, which is different from the traditional Schwarzschild metric. Then, in another article by starting from this correct Schwarzschild metric, we have corrected also the Reissner-Nordstrøm, Kerr and Kerr-Newman metrics. On the other hand, in a third article, always by starting from this correct Schwarzschild metric, we have obtained the formulas of the correct gravitational potential and of the correct gravitational force in the case described by this metric. Now, in this article, by starting from these correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics and proceeding in a manner analogous to this third article, we obtain the formulas of the correct gravitational potential and of the correct gravitational force in the cases described by these metrics. Moreover, we analyze these correct results and their consequences. Finally, we propose some possible crucial experiments between the commonly accepted theory and the same theory corrected according to this article. 展开更多
关键词 General Theory of Relativity SCHWARZSCHILD Reissner-Nordstrøm KERR Kerr-Newman Metric Gravitational Potential Gravitational force Orbital motion
在线阅读 下载PDF
Fast,Safe and Robust Motion Planning for Autonomous Vehicles Based on Robust Control Invariant Tubes
10
作者 Mingzhuo Zhao Tong Shen +1 位作者 Fanxun Wang Guodong Yin 《Chinese Journal of Mechanical Engineering》 2025年第2期326-343,共18页
This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in tradition... This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in traditional feedback control,to the domain of motion planning for autonomous vehicles.Thus,closed-loop system uncertainty can be preemptively addressed during vehicle motion planning.This involves selecting collision-free trajectories to minimize the volume of robust invariant tubes.Furthermore,constraints on state and control variables are translated into constraints on the RCI tubes of the closed-loop system,ensuring that motion planning produces a safe and optimal trajectory while maintaining flexibility,rather than solely optimizing for the open-loop nominal model.Additionally,to expedite the solving process,we were inspired by L2gain to parameterize the RCI tubes and developed a parameterized explicit iterative expression for propagating ellipsoidal uncertainty sets within closedloop systems.Furthermore,we applied the pseudospectral orthogonal collocation method to parameterize the optimization problem of transcribing trajectories using high-order Lagrangian polynomials.Finally,under various operating conditions,we incorporate both the kinematic and dynamic models of the vehicle and also conduct simulations and analyses of uncertainties such as heading angle measurement,chassis response,and steering hysteresis.Our proposed robust motion planning framework has been validated to effectively address nearly all bounded uncertainties while anticipating potential tracking errors in control during the planning phase.This ensures fast,closed-loop safety and robustness in vehicle motion planning. 展开更多
关键词 motion planning Vehicle dynamics Robust control invariant tubes Autonomous driving Robust control Trajectory optimization
在线阅读 下载PDF
Research on Hierarchical Motion Control of Corner Module Configuration Intelligent Electric Vehicle
11
作者 Yongjun Yan Chenshuo Zhang +5 位作者 Pengyu Xue Hongliang Wang Dawei Pi Wenfu Xue Ye-Hwa Chen Xianhui Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期396-410,共15页
The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks an... The intelligent vehicle corner module system,which integrates four-wheel independent drive,independent steering,independent braking and active suspension,can accurately and efficiently perform vehicle driving tasks and is the best carrier of intelligent vehicles.Nevertheless,too many angle/torque control inputs make control difficult and non-real-time.In this paper,a hierarchical real-time motion control framework for corner module configuration intelligent electric vehicles is proposed.In the trajectory planning module,an improved driving risk field is designed to describe the surrounding environment’s driving risk.Combined with the kinematic vehicle-road model,model predictive control(MPC)method,spline curve method,the local reference trajectory of safety,comfort and smoothness is planned in real time.The optimal steering angle is determined using MPC method in path tracking module.In the motion control module,a feedforward-feedback controller assigns the optimal steering angle to the front/rear axles,and an angle allocation controller distributes the target angles of the front/rear axles to four steered wheels.Finally,the PreScan-Simulink-CarSim joint simulation environment is established for conducting the human-in-the-loop emergency obstacle avoidance experiment.It took only 0.005 s for the hierarchical motion control system to determine its average solution time.This proves the effectiveness of the hierarchical motion control system. 展开更多
关键词 Corner module Four-wheel steering Hierarchical motion control Model predictive control Driving risk field
在线阅读 下载PDF
Gait Planning,and Motion Control Methods for Quadruped Robots:Achieving High Environmental Adaptability:A Review
12
作者 Sheng Dong Feihu Fan +2 位作者 Yinuo Chen Shangpeng Guo Jiayu Liu 《Computer Modeling in Engineering & Sciences》 2025年第4期1-50,共50页
Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt e... Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics. 展开更多
关键词 Quadruped robots model-based planning motion control autonomous learning algorithmintegration
在线阅读 下载PDF
Identification and compensation of friction and force ripple in PMSLM based on the time-domain analysis of relay feedback
13
作者 Xiang Zhang Fuzhao Chen +3 位作者 Qian Chen Yongjing Ma Xiuwei Tong Zhenhong Wang 《Railway Sciences》 2025年第4期475-493,共19页
Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feed... Purpose–This study aims to propose a novel identification method to accurately estimate linear and nonlinear dynamics in permanent magnet synchronous linear motor(PMSLM)based on the time-domain analysis of relay feedback.Design/methodology/approach–A mathematical model of the PMSLM-based servo-mechanical system was first established,incorporating the aforementioned nonlinearities.The model’s velocity response was derived by analyzing its behavior as a first-order system under arbitrary input.To induce oscillatory dynamics,an ideal relay with artificially introduced dead-time components was then integrated into the servo-mechanism.Depending on the oscillations and the time-domain analysis,nonlinear formulas were deduced according to the velocity response of the servo-mechanism.Afterwards,the unknown model parameters can be solved on account of the cost function which utilizes the discrepancy between nominal position characteristics and temporary position characteristics,both of which are extracted from the oscillations.The proposed recognition method was validated through a twostage process:(1)numerical simulation and calculation,followed by(2)real-time experimental verification on a direct-drive servo platform.Subsequently,leveraging the identification results,a novel control strategy was developed and its tracking performance was benchmarked against conventional control schemes.Findings–Simulation results demonstrate that the proposed method achieves estimation accuracy within 8%.Building on this,a novel control strategy is developed by incorporating both friction pulsation and force pulsation identification results into the feedforward compensator.Comparative experiments reveal that this strategy significantly enhances tracking and positioning performance over traditional control schemes.In a word,this new identification method can be used in different process control and servo control systems.Moreover,parameter auto-tuning,feed forward compensation or disturbance observer can be investigated based on the obtained information to improve the system stability and control accuracy.Originality/value–It is of great significance for the performance improvement of rail transit motor control equipment,such as electro-mechanical braking systems.By enhancing the efficiency of motor control,the performance of the product will be more outstanding. 展开更多
关键词 Motor control PMSLM Relay feedback force ripple FRICTION Relay parameters
在线阅读 下载PDF
External force to live long and prosper:A passive exercise classification framework
14
作者 Benjamin Tari Matthew Heath +3 位作者 Fabian Herol Yu-Bu Wang Qian Yu Liye Zou 《Journal of Sport and Health Science》 2025年第5期62-66,共5页
1.IntroductionPassive movement is a 200+year-old manipulation involving the external movement of an individuals’limbs or body absent voluntary effort or muscle contraction.1The original application of passive movemen... 1.IntroductionPassive movement is a 200+year-old manipulation involving the external movement of an individuals’limbs or body absent voluntary effort or muscle contraction.1The original application of passive movement was therapist-guided limb manipulation to increase range of motion and blood supply following acute and chronic injury. 展开更多
关键词 blood supply therapist guided manipulation range motion external force passive movement acute injury
暂未订购
Development of Virtual Simulation System Based on Motion Control Card and Unity Platform
15
作者 Shuangquan Wen Pengxiong Wang 《Journal of Electronic Research and Application》 2025年第1期94-99,共6页
Digital twin can simulate and monitor the state and behavior of physical entities in the real world,helping enterprises to better understand and manage real-world physical systems,improve production efficiency,reduce ... Digital twin can simulate and monitor the state and behavior of physical entities in the real world,helping enterprises to better understand and manage real-world physical systems,improve production efficiency,reduce costs,and improve safety and reliability.In this paper,we use GTS motion control card and Unity engine to build a digital twin system,and control a virtual industrial automation handling platform including two screw servo axes and multiple sensors through the physical GTS motion control card.The control card program controls the motion of the virtual model through transmission control protocol(TCP)communication,and the virtual model system feeds back the signal to the control card program to achieve the virtual and real synchronous digital twin effect.The digital twin system uses Unity engine to create a highly realistic virtual environment,and can run on multi-platform terminals. 展开更多
关键词 Digital twin GTS motion control card Unity engine TCP communication
在线阅读 下载PDF
Hilbert−Huang Time-Delay Compensation Control Strategy Based on Gauss-DeepAR for Ship Heave Motion Prediction
16
作者 ZHANG Qin HE Dai-jing +1 位作者 GU Bang-ping HU Xiong 《China Ocean Engineering》 2025年第2期209-224,共16页
The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantl... The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantly affected by the hysteresis phenomenon in the wave compensation system.To address this issue,a ship heave motion prediction is proposed in this paper on the basis of the Gauss-DeepAR(AR stands for autoregressive recurrent)model and the Hilbert−Huang time-delay compensation control strategy.Initially,the zero upward traveling wave period of the level 4−6 sea state ship heave motion is analyzed,which serves as the input sliding window for the Gauss-DeepAR prediction model,and probability predictions at different wave direction angles are conducted.Next,considering the hysteresis characteristics of the ship heave motion compensation platform,the Hilbert−Huang transform is employed to analyze and calculate the hysteresis delay of the compensation platform.After the optimal control action value is subsequently calculated,simulations and hardware platform tests are conducted.The simulation results demonstrated that the Gauss-DeepAR model outperforms autoregressive integrated moving average model(ARIMA),support vector machine(SVM),and longshort-term memory(LSTM)in predicting non-independent identically distributed datasets at a 90°wave direction angle in the level 4−6 sea states.Furthermore,the model has good predictive performance and generalizability for non-independent and non-uniformly distributed datasets at a 180°wave direction angle.The hardware platform compensation test results revealed that the Hilbert–Huang method has an outstanding effect on determining the hysteretic delay and selecting the optimal control action value,and the compensation efficiency was higher than 90%in the level 4−6 sea states. 展开更多
关键词 heave motion Gauss-DeepAR prediction model Hilbert−Huang transform delay compensation control
在线阅读 下载PDF
Reinforcement learning with soft temporal logic constraints using limit-deterministic generalized Büchi automaton
17
作者 Mingyu Cai Zhangli Zhou +2 位作者 Lin Li Shaoping Xiao Zhen Kan 《Journal of Automation and Intelligence》 2025年第1期39-51,共13页
This paper investigates control synthesis for motion planning under conditions of uncertainty,specifically in robot motion and environmental properties,which are modeled using a probabilistic labeled Markov decision p... This paper investigates control synthesis for motion planning under conditions of uncertainty,specifically in robot motion and environmental properties,which are modeled using a probabilistic labeled Markov decision process(PL-MDP).To address this,a model-free reinforcement learning(RL)approach is designed to produce a finite-memory control policy that meets complex tasks specified by linear temporal logic(LTL)formulas.Recognizing the presence of uncertainties and potentially conflicting objectives,this study centers on addressing infeasible LTL specifications.A relaxed LTL constraint enables the agent to adapt its motion plan,allowing for partial satisfaction by accounting for necessary task violations.Additionally,a new automaton structure is introduced to increase the density of accepting rewards,facilitating deterministic policy outcomes.The proposed RL framework is rigorously analyzed and prioritizes two key objectives:(1)satisfying the acceptance condition of the relaxed product MDP,and(2)minimizing long-term violation costs.Simulation and experimental results are presented to demonstrate the framework’s effectiveness and robustness. 展开更多
关键词 Formal methods in robotics and automation Linear temporal logic motion planning Optimal control
在线阅读 下载PDF
A high maneuvering motion strategy and stable control method for tandem twin-rotor aerial-aquatic vehicles near the water surface
18
作者 Sifan Wu Maosen Shao +4 位作者 Sihuan Wu Zhilin He Hui Wang Jinxiu Zhang Yuan Liu 《Defence Technology(防务技术)》 2025年第2期206-220,共15页
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this... The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent. 展开更多
关键词 Tandem twin-rotor Aerial-aquatic vehicle High maneuvering motion strategy Active disturbance rejection controller Skipping on water surface
在线阅读 下载PDF
Cross-section distortion and springback characteristics of double-cavity aluminum profile in force controlled stretch-bending
19
作者 Zhi-wen LIU Zi-xuan DONG +2 位作者 Cong-chang XU Jie YI Luo-xing LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2476-2490,共15页
3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc... 3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%. 展开更多
关键词 hollow aluminum profile force controlled stretch-bending numerical parameters springback analysis approach cross-section distortion SPRINGBACK process parameters
在线阅读 下载PDF
Research on the Coordinated Control of the Multi-point Array Support Force of Complex Structural Parts
20
作者 Deli Zhang Yongchang Yang +2 位作者 Rupeng Li Zhe Liu Zheng Qin 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第6期16-23,共8页
Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each ... Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each flexible support point is not uniform, and there exists force coupling between the support units. In response to the force coupling problem in the multi-point array positioning support process, a coordinated control method for the support force of multi-point array positioning combining correlation coefficient and regression analysis was proposed in this paper. The Spearman correlation coefficient was adopted in this method to study the force coupling correlation between positioning points, and a mathematical model of force coupling was established between positioning units through regression analysis, which can quickly and accurately perform coordinated control of the multilateration support system, and effectively improve the force interference of the multi-point array positioning support scene. 展开更多
关键词 coordinated control multipoint array support positioning adjustment flexible tooling force control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部