A series of tricyanoiron(Ⅲ) complexes with the general formula mer-[FeⅢ(5-Xsap)(CN)3]2-(X = H, Me, MeO, Cl or Br, sapH2 = N-salicylidene-o-aminophenol) have been synthesized. These complexes were characterized by IR...A series of tricyanoiron(Ⅲ) complexes with the general formula mer-[FeⅢ(5-Xsap)(CN)3]2-(X = H, Me, MeO, Cl or Br, sapH2 = N-salicylidene-o-aminophenol) have been synthesized. These complexes were characterized by IR, ESI-MS, UV/Vis, elemental analysis and magnetic measurements. The structures of (PPh4)2[FeⅢ(sap)(CN)3] and (PPh4)2[FeⅢ(5-Mesap)(CN)3] have been determined by X-ray crystallography. These low-spin d5 tricyanoiron(Ⅲ) complexes are potential building blocks for the construction of molecule-based magnets.展开更多
Enabling the use of rationally designed thin films in technological devices is a recognized goal in materials science. However, constructing such thin films using highly ordered supramolecular architectures with well-...Enabling the use of rationally designed thin films in technological devices is a recognized goal in materials science. However, constructing such thin films using highly ordered supramolecular architectures with well-controlled size and growth direction has remained an elusive target. Here, we introduce a layer-by- layer protocol to grow hybrid thin films of molecule-based magnetic conductors comprising arachidic acid and donor bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) as the organic component and Cu/Gd complexes as the inorganic component. The construction of layered hybrid thin films was achieved at ambient conditions by employing the Langmuir-Blodgett method, which provides good control over film thickness and packing of molecules in the monolayer. As demonstrated by X-ray diffraction, these films are crystalline with distinct organic and inorganic sublattices, where the BEDO-TTF molecular layer is interfaced with the inorganic layer. Due to the flexibility of the Langmuir-Blodgett deposition technique, this result indicates a route toward the preparation of well-ordered films with various functionalities, determined by the choice of the inorganic compound that is combined with the π-unit of BEDO-TFF. Moreover, the ability to deposit films on a variety of substrates establishes the potential for lower-cost device fabrication on inexpensive substrates.展开更多
Controlling spin behavior via external stimuli is a key route to develop molecular spintronics devices.Photons,temperature,pressure,chemicals,and electric field are the possible stimuli.Herein,we report a new method,t...Controlling spin behavior via external stimuli is a key route to develop molecular spintronics devices.Photons,temperature,pressure,chemicals,and electric field are the possible stimuli.Herein,we report a new method,the isotope effect,to control spin behavior in molecule magnet systems.It can not only control the relaxation of magnetization,but also regulate the spin lifetime of quantum coherence.展开更多
基金supported by the City University of Hong Kong (7002319)the Research Grants Council of Hong Kong (N_CityU 107/08)the National Natural Science Foundation of China (20831160505)
文摘A series of tricyanoiron(Ⅲ) complexes with the general formula mer-[FeⅢ(5-Xsap)(CN)3]2-(X = H, Me, MeO, Cl or Br, sapH2 = N-salicylidene-o-aminophenol) have been synthesized. These complexes were characterized by IR, ESI-MS, UV/Vis, elemental analysis and magnetic measurements. The structures of (PPh4)2[FeⅢ(sap)(CN)3] and (PPh4)2[FeⅢ(5-Mesap)(CN)3] have been determined by X-ray crystallography. These low-spin d5 tricyanoiron(Ⅲ) complexes are potential building blocks for the construction of molecule-based magnets.
文摘Enabling the use of rationally designed thin films in technological devices is a recognized goal in materials science. However, constructing such thin films using highly ordered supramolecular architectures with well-controlled size and growth direction has remained an elusive target. Here, we introduce a layer-by- layer protocol to grow hybrid thin films of molecule-based magnetic conductors comprising arachidic acid and donor bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) as the organic component and Cu/Gd complexes as the inorganic component. The construction of layered hybrid thin films was achieved at ambient conditions by employing the Langmuir-Blodgett method, which provides good control over film thickness and packing of molecules in the monolayer. As demonstrated by X-ray diffraction, these films are crystalline with distinct organic and inorganic sublattices, where the BEDO-TTF molecular layer is interfaced with the inorganic layer. Due to the flexibility of the Langmuir-Blodgett deposition technique, this result indicates a route toward the preparation of well-ordered films with various functionalities, determined by the choice of the inorganic compound that is combined with the π-unit of BEDO-TFF. Moreover, the ability to deposit films on a variety of substrates establishes the potential for lower-cost device fabrication on inexpensive substrates.
基金supported by the Major State Basic Research Development Program(nos.2017YFA0303203 and 2018YFA0306004)the National Natural Science Foundation of China(nos.21571097,21973038,21701046,and 21601005)+1 种基金the Fundamental Research Funds for the Central Universities(no.2018KFYXKJC010)and the Young Elite Scientist Sponsorship Program of the China Association of Science and Technology(no.YESS20150011).A portion of this work was performed at the National High Magnetic Field Laboratory,which is supported by the National Science Foundation through NSF/DMR-1157490,1644779 and the State of Florida.
文摘Controlling spin behavior via external stimuli is a key route to develop molecular spintronics devices.Photons,temperature,pressure,chemicals,and electric field are the possible stimuli.Herein,we report a new method,the isotope effect,to control spin behavior in molecule magnet systems.It can not only control the relaxation of magnetization,but also regulate the spin lifetime of quantum coherence.