Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cy...This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cycle,combined with a 41 MHz carrier wave produced by a passive crystal oscillator Pierce circuit.A 100% modulation index amplitude modulation is achieved through the AD835 multiplier.The modulated signal is amplified by a power amplifier circuit and transmitted wirelessly via the transmitter antenna.Upon reception,the signal undergoes two-stage highfrequency amplification before passing through a Schottky diode envelope detector.The NE5532 shaping circuit then restores the square wave.Experimental results demonstrate reliable 11-meter transmission with carrier frequency deviation<0.75% and demodulation error<1%.展开更多
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.展开更多
A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can main...A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.展开更多
In order to improve the spectrum efficiency of the high-order polar coded modulation systems, the polar code is used as the component code of the bit-interleave coded modulation(BICM) system, a novel bit mapping schem...In order to improve the spectrum efficiency of the high-order polar coded modulation systems, the polar code is used as the component code of the bit-interleave coded modulation(BICM) system, a novel bit mapping scheme is proposed considering of the channel polarization and successive cancellation(SC) decoding principle of polar codes as well as the unequal protection of equivalent channels by modulator. In this scheme, the frozen bits on the unreliable split channel are allocated to the equivalent channel with the low protection of the modulator, while the equivalent channels with the high protection are used to transmit the information bits. Thus, the error-correcting performance of polar codes is improved. Compared with some bit mapping schemes, the proposed bit mapping scheme only needs to divide and choose the parameters of the split channels reliability measurement, the complexity does not increase obviously, and simulation results show that the proposed scheme has the better performance under the quadrature amplitude modulation(QAM) modulation based on the Gray mapping.展开更多
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarri...recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency.展开更多
A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver a...A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna arrayts elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.展开更多
In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the rece...In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.展开更多
Recognition of modulation system is an important problem in the modern electronicreconnaissance.A general method for solving this problem is suggested in this paper.From asegment of a captured signal we can determine ...Recognition of modulation system is an important problem in the modern electronicreconnaissance.A general method for solving this problem is suggested in this paper.From asegment of a captured signal we can determine the modulation system and extract its parameterwith this method.The theoretical basis,algorithms and test results of this method are described.It has been proved that the method is very effective in practical situation.展开更多
To solve the inter carrier interference (ICI) elimination problem of an M-band wavelet multi-carrier modulation system, this paper analyzes the principle of the ICI caused by the Doppler frequency shift and its math...To solve the inter carrier interference (ICI) elimination problem of an M-band wavelet multi-carrier modulation system, this paper analyzes the principle of the ICI caused by the Doppler frequency shift and its mathematical expression based on the M-band wavelet multi-carrier modulation system model. Through the analysis of the mathematical expression and combining with the perfect reconstruction conditions of the filter banks, we propose the design conditions of an M-band filter to reduce and eliminate the ICI. The impulse response model of the filter design conditions and an iterative algorithm is also established. The simulation results show that the proposed ICI reduction and elimination methods can effectively improve the system performance.展开更多
Siphonic roof drainage systems (SRDS’s) have been widespread used now for approximately 40 years and are an efficient method of removing rainwater rapidly from roofs. SRDS’s are designed to run full-bore, resulting ...Siphonic roof drainage systems (SRDS’s) have been widespread used now for approximately 40 years and are an efficient method of removing rainwater rapidly from roofs. SRDS’s are designed to run full-bore, resulting in sub-atmospheric system pressures with high hydraulic driving heads and higher system flow velocities than conventionally guttered systems. Hence, SRDS’s normally require far fewer downpipes, and the depressurised conditions also mean that much of the collection pipework can be routed at a high level, thus reducing the extent of any underground pipework. But, they work properly at only one roof run-off rate and therefore suffer from sizing and operational problems including noise and vibration which limit their performance and adoption rate. Climate change is creating situations where normal ranges of rainfall intensity are being frequently exceeded, so the typical:storm ratios (rTS) are large increasing. Current SRDS’s typically operate within a small rTS range of 2. This may have an impact on the future uptake of SRDS’s. This paper describes the development of a novel SRDS which includes a small mobile cap at the roof of outlet appears to offer benefits and avoids sizing problems associated with current SRDS’s. The cap has the potential to avoid noise associated with making and breaking siphonic action through flow modulation. Laboratory scale tests demonstrate the basic feasibility of the cap system and indicate that the cap functions reliably. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Basic on sizing and design optimiza-tion factors are suggested. The rTS range is increased from approximately 2 to approximately 6.展开更多
A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rat...A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.展开更多
In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded B...In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded Bit-Interleaved Coded Modulation (BICM) systems. The accumulated soft output values delivered by every BP iteration are used as reliability values of Soft-Input Soft-Output OSD (SISO-OSD) decoder and the soft output of SISO-OSD is used as a priori probabilities of the demodulator for the next iteration. Simulation results show that this improved algorithm achieves noticeable performance gain with only modest increase in computation complexity.展开更多
Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function...Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zen...The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zener model with periodic modulation.We obtain adiabatic phase diagrams in the(ω,δ)parameter space,where the adiabatic region is bounded by the modulating frequencyωgreater than a critical valueω_(c) and the non-reciprocal parameterδless than one.The results show that the adiabaticity of the system is not sensitive to the modulating amplitude.We find that the critical modulating frequency can be expressed as a power function of the modulating period number or the sweeping rate.Our findings suggest that one can change the adiabatic region or improve the adiabaticity by adjusting the parameters of both the modulating and the sweeping fields,which provides an effective means to flexibly control the adiabatic dynamics of non-reciprocal systems.展开更多
In this paper,an index modulation(IM)aided uplink orthogonal time frequency space modulation(OTFS)structure for sparse code multiple access(SCMA)is proposed.To be more specific,the information bits are firstly partiti...In this paper,an index modulation(IM)aided uplink orthogonal time frequency space modulation(OTFS)structure for sparse code multiple access(SCMA)is proposed.To be more specific,the information bits are firstly partitioned for transmit antenna(TA)selection and sparse codeword mapping,respectively.Subsequently,the codewords deployed on the 2-dimensional(2D)delay-Doppler(DD)plane are transmitted by the selected TA,and the superimposed signals are jointly detected at the receiver.Furthermore,a low-complexity zero-embedded expectation propagation(ZE-EP)detector is conceived,where the codebooks are extended with zero vectors to reflect the silent indices.The simulation results demonstrate that the proposed IM-OTFS-SCMA system is capable of providing significant performance gain over the OTFS-SCMA counterpart.展开更多
With the advancement of electronic countermeasures,airborne synthetic aperture radar(SAR)systems are facing increasing challenges in maintaining effective performance in hostile environments.In particular,high-power i...With the advancement of electronic countermeasures,airborne synthetic aperture radar(SAR)systems are facing increasing challenges in maintaining effective performance in hostile environments.In particular,high-power interference can severely degrade SAR imaging and signal processing,often rendering target detection impossible.This highlights the urgent need for robust anti-interference solutions in both the signal processing and image processing domains.While current methods address interference across various domains,techniques such as waveform modification and spatial filtering typically increase the system costs and complexity.To overcome these limitations,we propose a novel approach that leverages the multi-domain characteristics of interference to efficiently suppress narrowband interference and repeater modulation interference.Specifically,narrowband interference is mitigated using notch filtering,a signal processing technique that effectively filters out unwanted frequencies,while repeater modulation interference is addressed through strong signal amplitude normalization,which enhances both the signal and image processing quality.These methods were validated through tests on real SAR data,demonstrating significant improvements in the imaging performance and system robustness.Our approach offers valuable insights for advancing anti-interference technologies in SAR systems and provides a cost-effective solution to enhance their resilience in complex electronic warfare environments.展开更多
This paper examines theπ/4QPSK modulation communication transmission system,analyzing the performance advantages and disadvantages ofπ/4QPSK in comparison to QPSK.It also presents a comprehensive FPGA implementation...This paper examines theπ/4QPSK modulation communication transmission system,analyzing the performance advantages and disadvantages ofπ/4QPSK in comparison to QPSK.It also presents a comprehensive FPGA implementation scheme for a modulation communication transmission system,integrating RS channel coding,framing,frequency conversion,and other modules.This design is based on practical research and development requirements.The Xilinx Spartan6 chip board was used for board-level verification.Theπ/4QPSK modulated signal was transmitted via D/A conversion and radio frequency,with the transmitted waveform was looped back for reception.After A/D processing,the correctness of the designed modulation transmission scheme was verified.展开更多
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
文摘This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cycle,combined with a 41 MHz carrier wave produced by a passive crystal oscillator Pierce circuit.A 100% modulation index amplitude modulation is achieved through the AD835 multiplier.The modulated signal is amplified by a power amplifier circuit and transmitted wirelessly via the transmitter antenna.Upon reception,the signal undergoes two-stage highfrequency amplification before passing through a Schottky diode envelope detector.The NE5532 shaping circuit then restores the square wave.Experimental results demonstrate reliable 11-meter transmission with carrier frequency deviation<0.75% and demodulation error<1%.
基金supported in part by The Science and Technology Development Fund, Macao SAR, China (0108/2020/A3)in part by The Science and Technology Development Fund, Macao SAR, China (0005/2021/ITP)the Deanship of Scientific Research at Taif University for funding this work。
文摘With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
基金Project(2011AA11A10102) supported by the High-tech Research and Development Program of China
文摘A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.
基金supported by the National High Technology and Development Program of China (No.61971079)the Postgraduate Science Research Innovation project of Chongqing Municipal Education Commission (No.CYS20266)。
文摘In order to improve the spectrum efficiency of the high-order polar coded modulation systems, the polar code is used as the component code of the bit-interleave coded modulation(BICM) system, a novel bit mapping scheme is proposed considering of the channel polarization and successive cancellation(SC) decoding principle of polar codes as well as the unequal protection of equivalent channels by modulator. In this scheme, the frozen bits on the unreliable split channel are allocated to the equivalent channel with the low protection of the modulator, while the equivalent channels with the high protection are used to transmit the information bits. Thus, the error-correcting performance of polar codes is improved. Compared with some bit mapping schemes, the proposed bit mapping scheme only needs to divide and choose the parameters of the split channels reliability measurement, the complexity does not increase obviously, and simulation results show that the proposed scheme has the better performance under the quadrature amplitude modulation(QAM) modulation based on the Gray mapping.
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
文摘recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency.
文摘A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna arrayts elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.
基金supported by National Natural Science Foundation of China(No.61801106).
文摘In this paper,a differential scheme is proposed for reconfigurable intelligent surface(RIS)assisted spatial modulation,which is referred to as RISDSM,to eliminate the need for channel state information(CSI)at the receiver.The proposed scheme is an improvement over the current differential modulation scheme used in RIS-based systems,as it avoids the high-order matrix calculation and improves the spectral efficiency.A mathematical framework is developed to determine the theoretical average bit error probability(ABEP)of the system using RIS-DSM.The detection complexity of the proposed RIS-DSM scheme is extremely low through the simplification.Finally,simulations results demonstrate that the proposed RIS-DSM scheme can deliver satisfactory error performance even in low signal-to-noise ratio environments.
文摘Recognition of modulation system is an important problem in the modern electronicreconnaissance.A general method for solving this problem is suggested in this paper.From asegment of a captured signal we can determine the modulation system and extract its parameterwith this method.The theoretical basis,algorithms and test results of this method are described.It has been proved that the method is very effective in practical situation.
基金supported by the National Natural Science Foundation of China (Grant No.60872114)
文摘To solve the inter carrier interference (ICI) elimination problem of an M-band wavelet multi-carrier modulation system, this paper analyzes the principle of the ICI caused by the Doppler frequency shift and its mathematical expression based on the M-band wavelet multi-carrier modulation system model. Through the analysis of the mathematical expression and combining with the perfect reconstruction conditions of the filter banks, we propose the design conditions of an M-band filter to reduce and eliminate the ICI. The impulse response model of the filter design conditions and an iterative algorithm is also established. The simulation results show that the proposed ICI reduction and elimination methods can effectively improve the system performance.
文摘Siphonic roof drainage systems (SRDS’s) have been widespread used now for approximately 40 years and are an efficient method of removing rainwater rapidly from roofs. SRDS’s are designed to run full-bore, resulting in sub-atmospheric system pressures with high hydraulic driving heads and higher system flow velocities than conventionally guttered systems. Hence, SRDS’s normally require far fewer downpipes, and the depressurised conditions also mean that much of the collection pipework can be routed at a high level, thus reducing the extent of any underground pipework. But, they work properly at only one roof run-off rate and therefore suffer from sizing and operational problems including noise and vibration which limit their performance and adoption rate. Climate change is creating situations where normal ranges of rainfall intensity are being frequently exceeded, so the typical:storm ratios (rTS) are large increasing. Current SRDS’s typically operate within a small rTS range of 2. This may have an impact on the future uptake of SRDS’s. This paper describes the development of a novel SRDS which includes a small mobile cap at the roof of outlet appears to offer benefits and avoids sizing problems associated with current SRDS’s. The cap has the potential to avoid noise associated with making and breaking siphonic action through flow modulation. Laboratory scale tests demonstrate the basic feasibility of the cap system and indicate that the cap functions reliably. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Basic on sizing and design optimiza-tion factors are suggested. The rTS range is increased from approximately 2 to approximately 6.
基金the National Basic Research Program of China(No5130601)Jiangsu Provincial Natural Science Foundation(NoBK2006701)
文摘A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.
基金Supported by the National Natural Science Foundation of China (No: 60496311)
文摘In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded Bit-Interleaved Coded Modulation (BICM) systems. The accumulated soft output values delivered by every BP iteration are used as reliability values of Soft-Input Soft-Output OSD (SISO-OSD) decoder and the soft output of SISO-OSD is used as a priori probabilities of the demodulator for the next iteration. Simulation results show that this improved algorithm achieves noticeable performance gain with only modest increase in computation complexity.
文摘Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12375019 and 11974273)。
文摘The control of adiabatic dynamics is essential for quantum manipulation.We investigate the effects of both periodic modulating field and linear sweeping field on adiabatic dynamics based on a non-reciprocal Landau-Zener model with periodic modulation.We obtain adiabatic phase diagrams in the(ω,δ)parameter space,where the adiabatic region is bounded by the modulating frequencyωgreater than a critical valueω_(c) and the non-reciprocal parameterδless than one.The results show that the adiabaticity of the system is not sensitive to the modulating amplitude.We find that the critical modulating frequency can be expressed as a power function of the modulating period number or the sweeping rate.Our findings suggest that one can change the adiabatic region or improve the adiabaticity by adjusting the parameters of both the modulating and the sweeping fields,which provides an effective means to flexibly control the adiabatic dynamics of non-reciprocal systems.
基金supported in part by the National Key Research and Development Program of China with Grant number 2021YFB2900502。
文摘In this paper,an index modulation(IM)aided uplink orthogonal time frequency space modulation(OTFS)structure for sparse code multiple access(SCMA)is proposed.To be more specific,the information bits are firstly partitioned for transmit antenna(TA)selection and sparse codeword mapping,respectively.Subsequently,the codewords deployed on the 2-dimensional(2D)delay-Doppler(DD)plane are transmitted by the selected TA,and the superimposed signals are jointly detected at the receiver.Furthermore,a low-complexity zero-embedded expectation propagation(ZE-EP)detector is conceived,where the codebooks are extended with zero vectors to reflect the silent indices.The simulation results demonstrate that the proposed IM-OTFS-SCMA system is capable of providing significant performance gain over the OTFS-SCMA counterpart.
文摘With the advancement of electronic countermeasures,airborne synthetic aperture radar(SAR)systems are facing increasing challenges in maintaining effective performance in hostile environments.In particular,high-power interference can severely degrade SAR imaging and signal processing,often rendering target detection impossible.This highlights the urgent need for robust anti-interference solutions in both the signal processing and image processing domains.While current methods address interference across various domains,techniques such as waveform modification and spatial filtering typically increase the system costs and complexity.To overcome these limitations,we propose a novel approach that leverages the multi-domain characteristics of interference to efficiently suppress narrowband interference and repeater modulation interference.Specifically,narrowband interference is mitigated using notch filtering,a signal processing technique that effectively filters out unwanted frequencies,while repeater modulation interference is addressed through strong signal amplitude normalization,which enhances both the signal and image processing quality.These methods were validated through tests on real SAR data,demonstrating significant improvements in the imaging performance and system robustness.Our approach offers valuable insights for advancing anti-interference technologies in SAR systems and provides a cost-effective solution to enhance their resilience in complex electronic warfare environments.
文摘This paper examines theπ/4QPSK modulation communication transmission system,analyzing the performance advantages and disadvantages ofπ/4QPSK in comparison to QPSK.It also presents a comprehensive FPGA implementation scheme for a modulation communication transmission system,integrating RS channel coding,framing,frequency conversion,and other modules.This design is based on practical research and development requirements.The Xilinx Spartan6 chip board was used for board-level verification.Theπ/4QPSK modulated signal was transmitted via D/A conversion and radio frequency,with the transmitted waveform was looped back for reception.After A/D processing,the correctness of the designed modulation transmission scheme was verified.